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INTRODUCTION

It is well known that the cumulative number of  items such 
as journals, articles, and authors in different scientific fields 
initially increases with time and then after a particular period, 
it attains a saturation value. If  one considers the growth of  
items per year (i.e., their number in successive years), one 
observes that this growth occurs at a relatively slow rate 
initially, followed by an exponential increase, and, in some 
cases, finally the growth declines after a certain time, giving 
rise to a sigmoidal shaped  (S‑shaped) curve. Among the 
different equations of  various models to analyze the above 
type of  growth behavior of  items, power‑law, exponential, 
and logistic functions are commonly used.[1‑6] Recently, 
Sangwal[7,8] proposed a new equation based on progressive 
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nucleation mechanism (PNM) of  a solid phase during its 
crystallization in a closed liquid system of  fixed volume.

In a recent paper, the present author[9] analyzed the 
dependence of  the number DL(t) of  citations per year 
of  the papers published by different Polish authors as a 
function of  publication duration t using the equation of  the 
PNM. For the analysis, he assumed a priori that the number 
DL(t) of  citations per year of  the papers of  an author is the 
analogue of  the cumulative number of  citations L(t) in the 
PNM. This approach was indeed found to be successful 
for the analysis of  the data. In the light of  more recent 
work on the basic concepts involved in the PNM,[10] now 
we know that the assumption is not true. Therefore, it 
remains unclear when the PNM expression describing 
the time dependence of  L(t) is valid for the DL(t) data for 
different authors.

The aim of  present study is two‑fold:  (1) to propose a 
general expression for the time dependence of  the number 
DLsum(t) of  citations of  progressively published papers 
by an author using the concepts of  the PNM, and (2) to 
compare the time dependence of  DLsum(t) of  citations per 
year of  papers published by different selected authors with 
predictions of  the time dependence of  their cumulative 
number of  citations L(t) according to the PNM.
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MODELING THE CITATION BEHAVIOR OF PAPERS

The time dependence of  cumulative number of  citations of  
papers published successively by an author is a continuous 
process in which new citations are received by the papers 
progressively. The basic concepts of  the mechanism, 
known as PNM, adapted to explain the above type of  time 
dependence are borrowed from the process of  overall 
crystallization of  a solid phase in a closed liquid system 
of  fixed volume. The theoretical aspects of  PNM are 
well‑developed in the field of  crystallization of  solid phase 
from melts and solutions.[11]

In overall crystallization of  a solid phase occurring in a 
closed liquid system, it is assumed[11] that nucleation of  the 
solid phase occurs on a total number Na of  active centers 
present in the crystallizing medium of  fixed volume and 
each nucleus grows independently of  the other nucleating 
and growing crystallites. The number of  active centers is 
exhausted progressively during the nucleation process, 
thereby determining the time dependence of  nucleation 
on active centers and finally, the overall crystallization of  
the solid phase. This type of  growth is known as PNM.

According to the PNM, the fraction α(t) of  cumulative 
citations L(t) at time t for an individual paper may be 
given by[7,8]
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where C is the maximum number of  citations that the 
paper can give  (i.e.,  citation capacity of  the paper), the 
time constant
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and the exponent

q d 1  . � (3)

In the above equations, Js is the rate of  stationary nucleation 
and k is the shape factor (e.g.  = 16p/3 for a sphere) and 
the time

t = Y – Y0,� (4)

where Y is the year of  the citations L(t) and Y0 is the actual or 
extrapolated year when α(t) = 0. In Eq. (3), the parameter d 
denotes the dimensionality of  citation nuclei which is equal to 
1, 2, and 3 for one‑, two‑, and three‑dimensions, respectively, 

whereas the exponent  = 1/2 and 1 for the growth of  nuclei 
controlled by volume diffusion and mass transfer, respectively. 
Differentiation of  Eq. (1) with respect to t gives the velocity 
v of  generation of  cumulative fraction α(t) of  citations:
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Eq.  (5) describes the change of  generation of  citations 
L(t) with time t. This equation predicts an initial increase 
followed by a decrease in the citation velocity v with an 
increase in time t.

If  DLi(t) denotes the citations per year of  paper i, vi is the 
corresponding citation velocity, and D is the time interval 
when a new paper is published, the cumulative citation 
velocity vsum(t) of  the collective of  N papers may be given as
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Eq.  (6) satisfies the conditions:  (1) when i = 1 or D = 0, 
vsum(t) = Nv1(t), (2) for all values of  D  >  0 and i  >  1, 
vsum(t) = Svi (t), and (3) the total citation duration T=t>(i–1) D.  
However, Eq. (6) does not have a simple solution but can 
be solved numerically following a procedure similar to that 
used in a previous paper to derive an expression for the 
time dependence of  cumulative citations Lsum(t).[12]

Eqs. (1) and (5) based on the PNM maybe used to describe 
the citation behavior of  an individual[10] as well as collectives 
of  papers of  an author.[8] Therefore, to find the solution 
of  Eq.  (6), one can use the citation data generated by 
using these equations for individual papers of  hypothetical 
authors. As in our previous paper,[12] we choose the 
following situations for this purpose:
1.	 The author publishes in the first year all of  his/her four 

papers simultaneously and these papers are characterized 
by a fixed value of  time constant Q and different values 
equal to 1.5, 2, 3, and 5 for the exponent q

2.	 During his/her publication career, the author publishes 
one paper per year since the publication of  his/her first 
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paper in sets of  four succeeding papers characterized 
by a fixed value of  time constant Q and different values 
equal to 1.5, 2, 3, and 5 for the exponent q

3.	 This situation is similar to that of  situation (2) but now 
the set of  four succeeding papers are characterized by 
a fixed value of  time constant Q and different values 
equal to 5, 3, 2, and 1.5 for the exponent q

4.	 The above values of  Q and q were selected in view of  
the fact that the value of  the time constant Q for the 
citations of  different individual papers lies between 
5 years and 15 years, whereas that of  the exponent q 
usually lies between 1 and 3[10]

5.	 The publication career of  an author usually lasts 
40 years.

Using the data generated for the above situations, a general 
expression of  the time dependence of  cumulative citation 
velocity vsum  (t) of  collectives of  papers in the form of  
Eq. (5) is given below.

TIME DEPENDENCE OF FRACTION 
Dsum(T) OF CITATIONS

Citations of  Individual and Collective of  Papers 
Published Simultaneously

Figures 1a and b illustrate the data of  the difference (at – at‑1) 
for individual papers i characterized by different q at 
Q = 10 years and by different Q and q = 2, respectively, 
calculated from the values of  a obtained by using Eq. (1) for 
times t and (t ‑ 1) up to 40 years. These data now represent 
the fraction Dai(t) for individual papers and are shown as 
points for different t. The data of  the fraction Dai(t ) of  
citations of  different papers, generated by using Eq.  (1), 
were subsequently analyzed using Eq.  (5) with the initial 

values of  q and Q employed to calculate Dai(t) data from 
Eq. (1). It was found that the best fit for the data is obtained 
when t = 0.5 year. The curves are drawn by using Eq. (5) 
with the values of  Q and q initially employed to generate 
the data by Eq. (1) and the correction time  = 0.5 year. The 
correction time denotes the average of  times t and t – 1.

From Figures 1a and b, the following features may be noted:
1.	 For a given value of  the time constant Q, with an increase 

in the value of  the exponent q, the maximum value of  
Dai (max) for the citations of  paper i shifts to a higher 
t such that the value of  tmax corresponding to the peak 
approaches the value of  the time constant Q [Figure 1a]

2.	 For a given value of  the exponent q, with an increase 
in the value of  the time constant Q, the maximum 
value of  Di(max) for the citations of  paper i shifts to 
a higher t such that the value of  tmax corresponding to 
the peak is lower than the value of  the corresponding 
time constant Q [Figure 1b]

3.	 For a given set of  Q and q, the area under the plot of  Dai 
for the citations of  paper i over the entire citation period t 
represents the maximum cumulative fraction ai(max) for 
the paper i. By its very definition, ai(max) =1

4.	 For different sets of  Q and q for the papers, the 
distribution of  their citations is usually asymmetrical. 
However, for a particular value of  Q, there is a value 
of  q when the distribution of  citations is symmetrical. 
Conversely, for a particular value of  q, there is a value 
of  Q when the distribution of  citations is symmetrical. 
Corresponding to Q = 10 years in Figure 1a, the value 
of  q lies between 3 and 5 when the distribution of  
citations is symmetrical

5.	 For the collectives of  papers corresponding to the 
two q1‑4 sequences investigated here, the value of  the 
exponent q0 of  Eq. (9) lies between 2 and 3.2.[8] This 

Figure 1: Examples of  dependence of  fraction ∆ai(t) of  citations of  individual papers i on time t for: (a) different q at Q = 10 years 
and (b) different Q at q = 2. Values of  q and Q are indicated in (a) and (b), respectively

(a) (b)
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implies that all of  the plots of  Dasum(t ) against citation 
time t are expected to be asymmetrical

6.	 After the publication of  a paper, there is a correction (or 
delay) time d for its first citations (i.e., 0 < d <1 year), 
which should be taken into account to describe its 
cumulative fraction ai(t ) and fraction Dai(t ) of  citations 
satisfactorily by Eqs. (1) and (5), respectively.

Figure 2a illustrates the plots of  resultant fraction Dasum(t ) 
of  citations by the above sets of  papers published 
simultaneously as a function of  citation time t. In the 
former case, the papers are characterized by Q = 10 years 
and q = 1.5, 2, 3, and 5, whereas in the latter case by Q = 5, 
10, and 15 years and q = 2. Figure 2b presents the plots 
of  cumulative resultant fraction asum(t ), calculated from 
Dasum(t ) data, against citation time t. The curves in Figure 2b 
are drawn with the best‑fit values of  the constants, given in 
Table 1, of  the asum(t ) data according to the relation
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where Q0 and q0 are new time constant and exponent 
describing the resultant citation behavior of  the entire 

collective of  papers, and the maximum fraction a0 ≡ N (N 
is the number of  cited papers). The curves in Figure 2a are 
drawn with the values of  the best‑fit constants of  Table 1 
using the equation
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which follows from Eq. (7). In Eq. (8), the symbols have the 
same significance as in Eq. (7) and the term dasum/dt Dasum, 
which by definition is equal to the fraction of  resultant citations 
of  the sets of  the papers. Eqs. (7) and (8) are analogues of  
Eqs. (1) and (5), respectively, for resultant citations.

It may be noted that the data of  Dasum(t ) and asum(t )
are described only approximately by Eqs.  (8) and  (7), 
respectively. However, in the ascending part the Dasum(t )
data are described well by Eq. (7), with the best‑fit constants 
listed in Table  1. The dashed curves drawn with these 
best‑fit constants are shown in Figure 2a.

Citations of  Papers Published Successively

Figure  3 shows examples of  the data of  Dasum(t ) of  
citations per unit time of  successively published papers of  

Table 1: Constants of Eq.  (8) for some thought experiments  (40 years)
Figure Symbol Curve Constants Fitting parameters

Θ (year) qi v0 (year−1) Θ0 (year) q0 (–)
2a Open 1 10 1.5, 2, 3, 5 3.999±0.012 10.047±0.057 2.483±0.045

Filled 2 5, 10, 15 2 2.991±0.007 9.633±0.007 1.462±0.018
2b Open 1 solid 10 1.5, 2, 3, 5 3.999±0.012 10.047±0.057 2.483±0.045

1 dash 0.809±0.312 11.70±5.55 1.262±0.153
Filled 2 solid 5, 10, 15 2 2.991±0.007 9.633±0.007 1.462±0.018

2 dash 0.271±0.008 2.233±0.108 2.013±0.193

Figure 2: Dependence of  (a) resultant fraction ∆asum(t) of  citations per unit time of  papers of  Figure 1 and (b) cumulative resultant 
fraction asum(t) of  citations of  above papers as a function of  citation time t

(a) (b)
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different citability with Q = 10 years and different sets of  
q. Figure 3a presents the data for the set of  papers with 
q1‑4 equal to 1.5, 2, 3, and 5, whereas Figure 3b shows the 
data for the set of  papers with q1‑4 equal to 5, 3, 2, and 
1.5. The curves are drawn using Eq. (8) with the values 
of  the parameters a0, Q0, and q0 obtained by using Eq. (7) 
for the regions of  different publication durations t given 
in the insets. It may be seen from Figure 3 that for about 
0.2 < Dasum(t ) <1, the curves drawn according to Eq. (8) 
reproduce the generated Dasum(t ) data fairly well in the 
citation period between 8 years and 16 years.

Figure  4 shows the data of  Figures  3a and b of  the 
fraction Dasum (t) of  citations per unit time produced for 
t = 40 years by successively published papers of  different 
citability with Q = 10 years and two sets of  q. The data 
can be represented by the empirical relation:

v t v t
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The best‑fit values of  the parameters Dasum(max), Q0, and 
q0 for the data according to Eq. (9) are given in Table 2. 
The solid curves in the figure are drawn to cover all of  the 
data for the two q1‑4 sequences. However, in the case of  the 
data for the q1‑4 sequence of  1.5, 2, 3, and 5 (open circles), 
a small correction time in t is required, which ensures a 
better fit of  the data at low citation time t [Figure 4]. Since 
the correction time d ≠ 0 for the best fit of  the generated 
data has no logical explanation, it may be concluded that 
the fit of  the data is reasonably good for citation time t 
exceeding about 5 years.

APPLICATION OF EQS. (7) AND (8) TO THE 
CITATION DATA OF AUTHORS

Eqs. (7) and (8) are general expressions, which can easily be 
extended to analyze the cumulative citations Lsum(t ) of  the 
papers of  individual authors and the citations DLsum(t ) per year 
as functions of  citation duration t. For this purpose, in Eq. (7), 

Table 2: Constants of Eq.  (8) for some thought 
experiments  (40 years)
Parameter 
q1‑4

Curve Fitting parameters
v0 (year−1) Θsum (year) qsum (–)

1.5, 2, 3, 5 Dash 0.9961±0.0051 9.78±0.11 2.364±0.084
5, 3, 2, 1.5 Solid 0.9881±0.0039 9.18±0.08 2.437±0.071

Figure 3: Data of  ∆asum (t) of  citations per unit time of  successively published papers of  different citability with Q = 10 years and 
different sets of  q: (a) 1.5, 2, 3, and 5; and (b) 5, 3, 2, and 1.5. Curves are drawn using Eq. (8) with best‑fit values of  a0, Θ0, and q0 
obtained for regions of  different publication durations

(a) (b)

Figure 4: Data of  fraction ∆asum(t) of  citations per unit time 
produced up to t = 40 years by successively published papers 
of  different citability with Q = 10 years and different sets of  q. 
Curves are drawn according to Eq.  (9) with the parameters 
∆asum(max), Θsum, and qsum given in Table 2
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the ratio asum/a0 may be considered as an average cumulative 
fraction aav for the citations of  papers published successively. 
Eq. (7) is exactly of  the form of  Eq. (1). Therefore, if  Lsum(t ) 
is the sum of  citations produced by successively published 
papers at time t, the ratio asum(t )/a0 may be defined in terms 
of  cumulative citations Lsum(t ) by the relation



sum sum( ) ( )t L t

C0 0

 ,� (10)

where C0 is sum of  the maximum numbers of  citations 
from the collective of  papers. Similarly, in terms of  the 
citations DLsum(t ) per year of  the successively published 
papers, the cumulative citation velocity vsum(t ) for the papers 
may be defined as

v t
v C
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where the parameter z is related to the total number of  
papers producing cumulative citations Lsum(t ). For example, 
in the above example of  successively published 40 papers 
in 40 years, zv0 = C0, the total number of  possible citations. 
Using these relations, Eqs. (7) and (8) may be expressed as 
follows:
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Eq. (9) also enables to express citations DLsum(t) in the form
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where the constant 0 = C0/z.

The dependence of  citations DLsum(t) per year on citation 
duration t of  papers published successively by selected 
Polish authors is compared here according to the predictions 
of  Eqs. (13) and (14). Eq. (14) was directly used to analyze 
the DLsum(t) data from the database and the plots were 
drawn with the best‑fit values of  the parameters C0, Qsum 
and qsum, whereas in the case of  Eq. (13), the plots of  the 
DLsum(t) against t were drawn with the values of  C0, Q0 and 
q0 obtained from analysis of  data of  cumulative citations 
Lsum(t) using Eq. (12). The six authors considered are: M. 
Kosmulski  (MK), K. Sangwal  (KS), S. Krukowski  (SK), 
G. Gładyszewski  (GG), W. Stępniewski  (WS), and Z. 
Żytkiewicz  (ZZ). The data on the DLsum(t) against t for 
these authors have been reported previously.[9]

Figure 5 shows the plots of  citations DLsum(t) per year as a 
function of  citation time t for the above authors, while the 
best‑fit values of  the constants 0, Qsum, and qsum according 
to Eq.  (14), taking correction time d  =  0, are listed in 
Table 3. The continuous curves in these figures are drawn 
with these values of  0, Qsum and qsum. Also shown in the 
figures are dashed curves drawn according to Eq. (13) with 
the values of  C0, Q0 and q0 obtained from analysis of  data 
of  cumulative citations Lsum(t) using Eq. (12).

It should be noted that, when the data of  citations DLsum(t) 
per year as a function of  citation time t for an author are 
described by a power‑law equation which follows from 
Eq.  (14) of  the PNM when (t/Q0)

 q0<<1, it is expected 
that Qsum = Q0, qsum = q0 – 1 and l0 < C0. As seen from 
Figure  5, although the citation data for KS, MK, and 

Figure 5: Plots of  DLsum(t) against t for different authors: (a) KS, MK, and SK and (b) GG, WS, and ZZ. In the case of  two sets 
of  C0, Θsum and qsum for the data of  an author, the set with the values indicated by arrows. Continuous and dashed curves are drawn 
according to Eqs. (13) and (14), respectively

L L

(a) (b)



Sangwal: Growth behavior of yearly citations of cumulative papers

36 	 J Scientometric Res. | Jan–Apr 2013 | Vol 2 | Issue 1

WS are reasonably well represented by both Eqs.  (13) 
and (14), the above expectations are not fulfilled entirely. 
These deviations are due to inaccurate best‑fit values of  
different parameters from the highly dispersed data used 
in the analysis. This is especially true for the DLsum(t) data. 
In the remaining cases, with citation time t, the citations 
DLsum(t) of  an author initially increase and then decrease 
after going through a maximum, although here also the 
data are highly scattered.

From a comparison of  the best fits of  the DLsum(t) data for 
different authors considered here for the analysis according 
to Eqs. (13) and (14), it may be concluded that the trends 
of  the DLsum(t) data are approximately reproduced by 
Eq. (14) when this dependence approximates the power‑law 
expression. In other cases, there are large divergences 
between the predictions of  Eqs. (13) and (14).

CONCLUSION

The main conclusion of  the present study is that the 
trends of  the plots of  yearly citations DLsum(t) of  
cumulative papers published successively by different 
authors against citation time t according to Eq.  (13) 
based on the PNM are approximately reproduced by 
empirical relation  (14) similar to the dependence of  
cumulative citations L(t) on t when this latter dependence 
approximates the power‑law expression. In other cases, 
there are large divergences between the predictions of  
Eqs.  (13) and  (14) with the data considered here for 
the analysis.

Table 3: Values of constants of Eqs.  (13) and  (14) for different authors
Author Y0 (year) Eq. (13) Eq. (14)

C0 (cites) Θ0 (years) q0 (–) l0 (cites/year) Θsum (years) qsum (–) 
KS 1971 5194 58.07 2.929 440 66.17 2.340

→ 16586 89.77 2.863
MK 1988 5341 30.02 3.284 402 35.73 3.824

→ 9209 36.88 3.154
SK 1988 1118 19.06 3.374 68.3 9.98 5.142
GG 1990 367 15.34 1.357 13.9 1.10 6.0
WS 1990 1734 51.29 2.022 43.2 25.56 1.125

→ 1453 45.53 2.204
ZZ 1980 564 24.21 3.925 28.0 13.27 9.705
KS=K. Sangwal, MK=M. Kosmulski, SK=S. Krukowski, GG=G. Gładyszewski, WS=W. Stępniewski, ZZ=Z. Żytkiewicz
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