
Journal of Scientometric Res.2019;8(2s):s74-s84
http://www.jscires.org Invited Article

Journal of Scientometric Research, Vol 8, Issue 2 [Special Issue], May-Aug 2019� 74

Treatment Repurposing using Literature-related 
Discovery

Copyright
© The Author(s). 2019 This article is distributed under the terms of the Creative  
Commons Attribution 4.0 International License (http:// creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction 
in any medium, provided you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons license, and indicate if 
changes were made.

Ronald N. Kostoff*

School of Public Policy, Georgia Institute of Technology, UNITED STATES.

ABSTRACT
This article describes the Literature-Related Discovery technique and its application 
to Treatment Repurposing (which includes, but goes well beyond, Drug Repurpos-
ing). Illustrative results of potential repurposed treatments were shown from a study 
on preventing and reversing Alzheimer’s disease. The detailed query used to gener-
ate these results is presented. The approach has the potential to identify voluminous 
amounts of candidate treatments for repurposing. Additionally, a broad review of the 
Drug Repurposing literature is provided. A Drug Repurposing database is retrieved 
and the structure and content are analyzed using Text Clustering and Factor Analysis. 
Two taxonomies of the Drug Repurposing literature are presented and specific major 
themes are shown.
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Literature-Related Discovery (LRD) for Treatment 
Repurposing (TR)

Literature-Related Discovery is a systematic approach to 
bridging unconnected disciplines based on text mining pro-
cedures.[1-2] In the LRD context, discovery is linking two or 
more literature concepts that have heretofore not been linked 
(i.e., disjoint), in order to produce novel, interesting, plausible 
and intelligible knowledge. In the medical arena, LRD can be 
used for identifying potentially new treatments for a disease 
(aka TR), identifying potentially new contributing factors for 
a disease, identifying new biomarkers for a disease, etc. By 
‘new’, we mean previously non-existent in the core biomedi-
cal literature for the disease of interest.

Structure of Treatment Repurposing Literature

TR is the application of an existing treatment for one or 
more diseases to diseases or symptoms of interest other than 
the disease(s) or symptom(s) for which the treatment was de-
veloped (and used) initially. Many comprehensive reviews of 
one component of TR, drug repurposing/repositioning, have 
been published recently.[3-12] As shown in these reviews, as 
well as many other more narrowly-focused documents, there 
are myriad possible categorizations for the TR literature. 

For example, some TR papers are:

*disease-focused;[13-15] 

*drug focused;[16-18] 

*biomarker-focused;[19-21] 

*prediction methodology-focused, etc. 

The prediction methodology category includes, but is not 
limited to, the following sub-categories: 

*text-mining;[22-28] 

*machine learning;[5,7,29-31] 

*network-based;[32-35] 

*semantics;[36-38] 
*ligand-binding/ligand-protein docking/binding-site fo-
cused;[39-42] 

*protein targeting;[43-45] 

*transcriptional signature-focused.[46-48]

The LRD approach of TR is in the text mining sub-category 
of prediction methodology-focused approaches. LRD-TR 
identifies treatments from the biomedical literature that alter 
combinations of markers (mainly biomarkers) in directions 
required to reverse target diseases of interest (see Appendix 1 
for details). 

This review article presents a detailed description of LRD-
based TR (which includes Drug Repurposing but goes well 
beyond drugs to include any type of treatment), in the con-
text of a broad TR literature reveiw. It contains illustrative ex-
amples of TR from a 2018 study on preventing and reversing 
Alzheimer’s Disease (AD) (Kostoff RN, Porter AL, Buchtel 
HA. Prevention and reversal of Alzheimer’s disease: treat-
ment protocol. Georgia Institute of Technology. 2018. PDF. 
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https://smartech.gatech.edu/handle/1853/59311), as well as an 
algorithm for generating voluminous TR (see Appendix 1). 

Two more objective perspectives on the structure of the TR 
literature are shown in Appendices 2 and 3. Appendix 2 con-
tains a hierarchical taxonomy of the 2890 Medline record TR 
literature obtained with the CLUTO text clustering software 
(CLUTO. 2018. http://glarosdtcumnedu/gkhome/views/clu-
to, University of Minnesota). This unique taxonomy presents 
the higher-level and most detailed categories that constitute 
the core TR biomedical literature. A display of the taxonomy 
linked to the titles of papers in the most detailed categories 
can be found in Appendix 2 of (Kostoff RN. Treatment Re-
purposing using Literature-Related Discovery. Georgia Insti-
tute of Technology. 2018. PDF. https://smartech.gatech.edu/
handle/1853/60507).

Appendix 3 of the present article contains the results of a factor 
analysis of the TR literature. Only the factor themes are pre-
sented and discussed. Appendix 3 of (Kostoff RN. Treatment 
Repurposing using Literature-Related Discovery. Georgia 
Institute of Technology. 2018. PDF. https://smartech.gatech.
edu/handle/1853/60507) contains a factor matrix showing the 
themes and key phrases that had the strongest influence on 
determining the themes. The phrases under each factor are 
linked to record titles associated with those phrases.

Overview of LRD-TR Methodology

Treatments of disease or contributing factors to disease result 
in changes to myriad markers in the body, including, but not 
limited to: 

*general biomarkers (e.g., neuroinflammation, neurodegen-
eration, DNA damage, mitochondrial dysfunction, oxidative 
stress, neurotransmission dysfunction; olfactory dysfunction, 
glutamate uptake, glucose homeostasis, etc); 

*specific biomarkers (e.g., ATP, B12, B6, BACE-1, Bax, Bcl-
2, BDNF, c-AMP, caspase, folate, GLP-1, GSK-3, etc); 

*symptoms (e.g., insomnia, ataxia, dysphagia, etc); 

*performance (e.g., memory, learning, cognition, etc); 

*behaviors (e.g., apathy, depression, anxiety, aggression, agi-
tation, etc);

*others. 

Appendix 4 of (Kostoff RN. Treatment Repurposing using Lit-
erature-Related Discovery. Georgia Institute of Technology. 
2018. PDF. https://smartech.gatech.edu/handle/1853/60507) 
contains extensive examples of myriad markers from the AD 
study and the directions in which they changed in associa-
tion with the presence/imposition of AD contributing factors 
or the provision of AD treatments. These markers and their 

directions of change from treatments or contributing factors 
form the basis of the TR discovery approach.

The TR discovery approach presented in this article consists 
of a two-stage process:

Stage 1: identify critical markers associated with a disease of 
interest and identify how the values of those markers change 
1) when contributing factors to disease are operable and 2) 
when treatments are operable. 

Stage 2: search the non-disease-of-interest literature for po-
tential treatments that will change the markers of interest in 
the desired direction.

Specific Methodology Adapted from AD Study

(Kostoff RN, Porter AL, Buchtel HA. Prevention and rever-
sal of Alzheimer’s disease: treatment protocol. Georgia Insti-
tute of Technology. 2018. PDF. https://smartech.gatech.edu/
handle/1853/59311)

Stage 1: Identify critical markers and their directions of change 
associated with existing AD contributing factors

The first step in Stage 1 of the AD study (and in a recently-
completed study (Kostoff RN. Prevention and Reversal of 
Peripheral Neuropathy/Peripheral Arterial Disease. Geor-
gia Institute of Technology. 2019. PDF. http://hdl.handle.
net/1853/61865)) was to 1) identify existing contributing fac-
tors (causes) to AD and 2) identify markers (mainly biomark-
ers) whose changes from the norm were associated with the 
AD contributing factors. Multiple approaches were used to 
identify these existing AD contributing factors and their as-
sociated markers, since no one approach was fully compre-
hensive.

Visual Inspection

A Visual Inspection approach was used initially for the AD 
study. It started by generating a database of millions of abstract 
phrases parsed from ~100,000 records that constituted the total 
AD core Medline literature. Then, tens of thousands of the 
highest frequency phrases were inspected visually and those 
that appeared to be contributing factors to AD were selected. 
During this process and in the subsequent confirmatory pro-
cess that validated the selection of AD contributing factors, 
many non-biomedical terms were identified that were closely 
associated with the existing AD contributing factors (shown 
in the next section). These non-biomedical terms could then 
be (and were) used as ‘linking terms’, to target lower frequen-
cy phrases (among the millions of abstract phrases) that had 
high probability of being/including existing AD contributing 
factors. 



Kostoff.: Treatment Repurposing using Literature-related Discovery

76� Journal of Scientometric Research, Vol 8, Issue 2 [Special Issue], May-Aug 2019

these markers experienced as a result of the existing AD 
treatment(s). These treatment-related data were also recorded.

Identify critical markers and their directions of change 
associated with existing AD treatments

The second step in Stage 1 of the AD study (and in the recent-
ly-completed study (Kostoff RN. Prevention and Reversal of 
Peripheral Neuropathy/Peripheral Arterial Disease. Geor-
gia Institute of Technology. 2019. PDF. http://hdl.handle.
net/1853/61865)) was to 1) identify existing AD treatments 
and 2) identify markers (mainly biomarkers) whose changes 
from the norm were associated with the existing AD treat-
ments. Multiple approaches were used to identify these exist-
ing AD treatments and their associated markers, since no one 
approach was fully comprehensive. 

Visual Inspection

A Visual Inspection approach (part of the visual inspection 
approach described in the previous section) was used, which 
consisted of reading the thousands of high frequency abstract 
phrases in the core AD literature and selecting those that ap-
peared to be treatments for AD. During this process and in 
the subsequent confirmatory process that validated the selec-
tion of existing AD treatments, non-biomedical terms were 
identified that were closely associated with the existing AD 
treatments (shown in the next section). These non-biomedi-
cal terms could then be (and were) used as ‘linking terms’, to 
target phrases (among the millions of abstract phrases) that had 
high probability of being/including existing AD treatments.

Linking Term

Diverse linking term approaches were used to target records 
with high probability of containing existing AD treatments. 
These included:

-MeSH Qualifiers associated strongly with treatments (e.g., 
diet therapy, drug therapy, prevention and control, therapeu-
tic use, therapy, etc); 

-Relatively unambiguous MeSH Headings associated strongly 
with treatments (e.g., Treatment Outcome, Neuroprotective 
Agents, Nootropic Agents, Plant Extracts, Phytotherapy, Di-
etary Supplements, Drugs, Chinese Herbal, etc); 

-Text terms associated strongly with treatments (treat*, ther-
ap*, prevent*, protect*, improv*, reduc*, attenuat*, ameliorat*, 
enhanc*, revers*, promot*, alleviat*, inhibit*, remov*, sup-
press*, mitigat*, restor*, lower*, preserv*, regenerat*, rescu*, 
slow*). 

These linking terms were especially valuable for accessing ex-
isting low-frequency AD treatments not accessible from visual 
inspection of the high-frequency phrases. Some of these link-
ing terms had higher efficiencies of identifying the treatment 

Linking Term

A number of linking term approaches were used to target re-
cords or phrases with high probability of containing existing 
AD contributing factors. These included:

-MeSH Qualifiers associated strongly with contributing fac-
tors (e.g., adverse effects, toxicity, pathogenicity, poisoning); 

-Relatively unambiguous MeSH Headings associated strong-
ly with contributing factors (e.g., “Drug-Related Side Effects 
AND Adverse Reactions”; Abnormalities, Drug Induced; Air 
Pollutants, Occupational; Amphetamine Related Disorders; 
Carcinogens; Chemical Warfare Agents; Chemically-Induced 
Disorders, etc); 

-Text terms associated strongly with contributing factors 
(e.g., -induced; caused by; induced by; -contaminated; expo-
sure to; exposure(s) [at end of phrase]; exposed to; poisoning 
[at end]; -exposed [at end]; -related; -associated; -infected; 
abuse*; toxicity). 

These linking terms were especially valuable for accessing 
low-frequency existing AD contributing factors not acces-
sible from visual inspection of the high-frequency phrases.

-Dot Product

A dot product approach was used to identify phrases that had 
high probability of being existing AD contributing factors. 
External lists of toxic substances generated by Federal gov-
ernment organizations, state regulatory agencies and other 
major organizations were aggregated. The final list of toxic 
substances was intersected with the full list of millions of ab-
stract phrases in the core AD literature, to identify additional 
existing AD contributing factors.

The total number of validated existing AD contributing fac-
tors identified by the above approaches (from the premier bio-
medical literature) numbered about 400-600, depending on 
how the existing AD contributing factors were aggregated. 
In all the approaches to identifying existing AD contributing 
factors shown above, the initial existing AD contributing fac-
tors selected were confirmed and validated by detailed reading 
of the relevant abstracts. 

During the confirmation and validation process, one or (usu-
ally) more record abstracts containing the candidate existing 
AD contributing factor term were read and other relevant 
data in the abstract were recorded. These data included bio-
markers, symptoms and behaviors impacted by the existing 
AD contributing factor(s) and the directions in which these 
markers were moved (increased, decreased, etc). In some/
many of these records, one or more existing AD treatment(s) 
were also identified, as well as the myriad markers associated 
with the existing AD treatments and the directions of change 
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During the confirmation and validation process, one or (usu-
ally) more record abstracts containing the candidate exist-
ing AD treatment term were read and other relevant data in 
the abstract were recorded. These data included biomarkers, 
symptoms and behaviors impacted by the treatment(s) and the 
directions in which these markers were moved (increased, de-
creased, etc) associated with the treatment. In some/many of 
these records, one or more existing AD contributing factor(s) 
were also identified, as well as the myriad markers associated 
with the existing AD contributing factor(s) and the directions 
of change these markers experienced associated with the ex-
isting AD contributing factor(s). These contributing factor-
related data were also recorded.

Additional markers could have been identified using the same 
approaches for identifying contributing factors and treat-
ments, but that was not done in the AD study. It was done 
in the more recent study on peripheral neuropathy (PN)/
Peripheral Arterial Disease (PAD) (Kostoff RN. Prevention 
and Reversal of Peripheral Neuropathy/Peripheral Arterial 
Disease. Georgia Institute of Technology. 2019. PDF. http://
hdl.handle.net/1853/61865) and approximately four times as 
many markers were identified compared to the AD study.

Stage 2

Search the non-disease-of-interest literature for 
potential treatments that will change the markers of 
interest in the desired direction.

Text mining of the AD biomedical literature (especially re-
cords focused on treatments and contributing factors) identi-
fied the critical markers associated with AD and identified the 
directions in which these critical markers needed to change 
for potential AD alleviation. For example, critical general 
biomarkers for AD and their desired directions of change in-
cluded ‘reduce oxidative stress’, ‘alleviate mitochondrial dys-
function’, ‘prevent apoptosis’, etc. Critical specific biomarkers 
for AD and their desired directions of change included ‘reduce 
BACE1’, ‘increase Bcl-2’, ‘enhance ADAM10’, etc.

From these markers and their desired directions of change 
for effective treatment of AD, a query was developed to 1) 
identify potential AD treatments from 2) treatments used in 
the non-AD literature (see Appendix 1 for query details). The 
non-AD biomedical literature was then searched for records 
including one or more of these AD markers that moved in de-
sired directions as a result of treatments (e.g., reduced Abeta; 
increased Bcl-2; reduced tau hyperphosphorylation; restricted 
NFKappaB signaling; reduced inflammation; reduced oxida-
tive stress; enhanced Nrf2, etc). 

Searching for records that had a threshold of including at least 
one of these desired marker alterations produced a voluminous 
retrieval. To keep the records retrieved at a manageable level, 

consequences of interest than others. Terms like prevent*, 
protect*, improv*, restor*, alleviat*, ameliorat*, mitigat*, etc, 
almost always gave the desired AD markers and the direction 
in which they changed as a result of treatment. Terms like 
decreas*and increas* (used initially, then abandoned), reduc*, 
slow*, etc, could go either way. The former group of terms 
had the ‘sense’ of improvement, while the latter group of terms 
reflected change (positive or negative) and may or may not 
have reflected improvement. 

The total number of existing AD treatments identified by the 
above approaches (from the premier biomedical literature and 
validated) numbered about 600-700, depending on how the 
existing AD treatments were aggregated. In all the approaches 
to identifying existing AD treatments shown above, the initial 
existing AD treatments selected were confirmed and validated 
by detailed reading of the relevant abstracts. 

The number of AD treatments we identified might seem unrealistically 
large at first glance, but these levels have occurred in all our disease reversal 
studies. These studies are based on the following systemic medical principle: 
at the present time, removal of cause is a necessary, but not necessarily sufficient, 
condition for restorative treatment to be effective. In the AD study, the treatments 
identified covered research over the past ~thirty years. The study did not 
exclude treatments that have ‘failed’ in human clinical trials, for the following 
reasons. Reading of thousands of abstracts on laboratory experiments and 
clinical trials of potential AD treatments has shown
1) in vitro experiments typically performed on neural cells tend to have 
reasonably positive outcomes, at least for those papers that surface in the peer-
reviewed published literature;
2) in vivo experiments typically performed on rodents (but other small animals 
as well) tend to also have reasonably positive outcomes, albeit somewhat less 
than in vitro experiments;
3) When these potential treatments reach the human clinical trial stage, 
especially the later phases, the success rates plummet!
The explanation for this discrepancy given most often is the species difference. 
Humans are different from rodent’s et al. and their physiological responses 
to stimuli are different as well. However, the toxic experiential and exposure 
background differences between humans who live in the sea of toxic exposures 
in the real world and animals who live in the very controlled environment of 
the laboratory are rarely, if ever, discussed.
There were many hundreds of potential causes for AD identified in the AD 
study (ranging from Lifestyle to Occupational/Environmental exposures). For 
a given individual, some causes have happened in the past and are no longer 
happening, but their damage trail remains. Other causes are ongoing, have 
caused damage and continue to cause damage.
Why would anyone expect a human being with such a toxic history to respond 
to a potential treatment the same way that a laboratory animal raised in a 
controlled environment would respond to that treatment? Furthermore, why 
would anyone expect a human being with such a toxic history to respond to 
a potential treatment the same way that another human being without such a 
toxic burden would respond to that treatment?

We cannot rule out failure to remove cause as a reason for the massive 
failure of myriad AD treatments in the clinical trials of the past three 
decades. That is why we retained even so-called ‘failed’ treatments 
in the present full-spectrum study of existing AD treatments. We 
don’t know which treatments failed because 1) they were intrinsically 
ineffective or 2) their beneficial effects were overwhelmed by the 
strong negative effects of the ongoing causes remaining operable.
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lustrative purposes. These examples were based on using com-
binations of two biomarkers only in the query and are contained 
in the following table:

Table 1: Illustrative LRD-TR Results from AD Study.

EXAMPLES OF POTENTIAL REPURPOSED AD TREATMENTS
•	 Fortunellin protects against high fructose-induced diabetic heart injury 

in mice by suppressing inflammation and oxidative stress via AMPK/Nrf-2 
pathway regulation[49]

•	 Protective effects of sarains on H2O2-induced mitochondrial dysfunction 
and oxidative stress; improving mitochondrial function and decreasing 
reactive oxygen species levels; ability to block the mPTP and to enhance 
the Nrf2 pathway[50]

•	 Carboxyamidotriazole alleviates muscle atrophy in tumor-bearing mice 
by inhibiting NF-kappaB and activating SIRT1; CAI restricted the NF-
kappaB signaling, downregulated the level of TNF-alpha in muscle and 
both TNF-alpha and IL-6 levels in serum, directly stimulated SIRT1 
activity in vitro and increased SIRT1 content in muscle[51]

•	 Protective effects and mechanism of meretrix meretrix oligopeptides 
(MMO) against nonalcoholic fatty liver disease; MMO inhibited the 
activation of cell death-related pathways, based on reduced p-JNK, Bax 
expression, tumor necrosis factor-alpha, caspase-9 and caspase-3 activity in 
the NAFLD model cells and Bcl-2 expression was enhanced in the NAFLD 
model cells[52]

•	 Extract from Periostracum cicadae inhibits oxidative stress and 
inflammation induced by Ultraviolet B Irradiation; decreased reactive 
oxygen species (ROS) production. The extract attenuates the expression 
of interleukin-6 (IL-6), matrix metalloproteinase-2 (MMP-2) and MMP-
9 in UVB-treated HaCaT cells. Also, P. cicadae abrogated UVB-induced 
activation of NF-kappaB, p53 and activator protein-1 (AP-1); accumulation 
and expression of NF-E2-related factor (Nrf2) were increased[53]

Note that while the query was limited to combinations of two 
biomarkers only as selection criteria, the actual numbers of 
biomarkers in the retrieved records that moved in the desired 
directions for healing were typically greater (sometimes much 
greater) than two.

Validation of TR Candidates

The final step involved in converting an existing treatment in 
the non-AD literature to a repurposed AD treatment is valida-
tion that the potential AD treatment has not been associated 
with AD application in the literature. The following block 
places the validation of our TR findings in context.

Treatment discovery/repurposing validation (or contrib-
uting factor or characteristic validation) is defined as the 
process of demonstrating that the candidate treatment has 
not been used or proposed for application to the disease of 
interest. This will be a function not only of the scope of the 
disease literature assumed, but which databases are included 
in the definition of the disease literature.

The AD study used the Pubmed version of Medline to re-
trieve the core AD literature and used both the Pubmed and 
Thomson Reuters versions to determine previous use. All 
the treatment discoveries/repurposing listed above were not 
present in these versions of the AD literature.

the requirement that a record in the non-AD literature must 
contain at least two AD markers (that moved in the appropri-
ate direction in conjunction with a treatment) to be retrieved 
was imposed. Even then, the retrieval was voluminous, indi-
cating the wealth of potential AD treatment repurposing pos-
sible from an expanded well-resourced study.

As a practical matter, combinations of the more fundamental 
and less AD-specific linking phrases were used for the treat-
ment repurposing query. The general form of the query was 
1) combinations of the markers and their desired directions 
of change followed by 2) negation of records that contained 
existing AD treatments. 

	 As an example of the query format:

(((increas* OR enhanc* OR restor*) NEAR/3 “norepineph-
rine”) AND ((increas* OR enhanc* OR restor*) NEAR/3 
“Nrf2”))

NOT 

((alzheimer* OR dementia OR “mild cognitive impairment”) 
OR {existing AD treatments}). 

While terms such as ‘reduce Abeta’ or ‘reduce tau phosphory-
lation’ may be efficient for extracting existing AD treatments 
from the AD literature, they are very inefficient, either in 
isolation or especially in combination, for AD treatment re-
purposing from the non-AD literature. It is difficult to imag-
ine people doing research in reducing Abeta or reducing tau 
hyperphosphorylation (much less doing research in both) not 
emphasizing the AD/dementia applications in their publica-
tions.

Finally, there are no restrictions on the numbers of treatments 
that could be repurposed for any disease of interest. For ex-
ample, assume that a patient has been diagnosed with a spe-
cific disease, characterized by three abnormal biomarker val-
ues. The query could be applied to identify/discover 1) one 
treatment that would bring all three of the biomarkers back to 
normal, or 2) one treatment that would bring two of the bio-
markers back to normal and one treatment that would bring 
the third biomarker back to normal, or 3) three treatments, 
each of which would bring one of the biomarkers back to 
normal. Obviously, the repurposed treatments in 2) and 3) 
would have to be compatible, but the technique offers a wide 
variety of options. 

Illustrative Examples of Potential Repurposed 
Treatments for AD

Appendix 1 contains the details of the actual query used to 
identify potential repurposed treatments for AD. Since the 
treatment repurposing described in the AD study was a proof-
of-principle demonstration of the latest incarnation of our 
LRDI approach, only a few examples were provided for il-
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nous TR results for any disease or symptom of interest; the 
only limitations are study resources.

The same generic process can be applied to identifying con-
tributing factors to a symptom or disease of interest that have 
not been existent previously in the core biomedical literature 
of that disease or symptom of interest but have been existent 
in the core biomedical literature of other diseases or symp-
toms. The same extrapolation process can be used for myriad 
markers as well.

For identification of both treatments and contributing factors, 
research needs to be done on which combinations of bio-
markers will be most fruitful in retrieving the largest volume 
of high-quality TR and new contributing factor candidates. 
What are the characteristics of such combinations that will 
maximize marginal utility?
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There could be other ways to define the scope of AD. There 
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should be viewed as limited, even though it is the method 
used and the databases used, by most (if not all) of the liter-
ature-based discovery community. For discovery patenting 
purposes, or other purposes, more extensive validation and 
larger numbers of databases, may be required.

In summary, each candidate potential AD treatment re-
trieved using the discovery query required validation before 
becoming a potential AD treatment. The candidate poten-
tial AD treatment was intersected with the core AD litera-
ture in late 2017 and was validated only after this intersec-
tion showed orthogonality.

For example, the candidate potential AD repurposed treat-
ment “fortunellin” was retrieved because it satisfied the de-
sired query general biomarker combination of reducing inflam-
mation and oxidative stress. Fortunellin also had the additional 
specific biomarkers-based benefits of reducing the pro-inflam-
matory cytokines and the expression of p-IkappaB kinase alpha, p-
IkappaBalpha and p-nuclear factor-kappaB, while significantly 
enhancing superoxide dismutase, catalase, heme oxygenase-1and p-
AMP-activated protein kinase. Fortunellin was intersected with 
the core AD biomedical literature retrieval terms (alzheimer* 
OR dementia OR “mild cognitive impairment”) and no re-
cords were retrieved, demonstrating that fortunellin could not 
be found in the core AD literature. Fortunellin was therefore 
validated as a potential AD repurposed treatment (LRD Dis-
covery).

CONCLUSION

The TR literature reflects intense interest in the medical com-
munity for extracting maximum utility from drugs developed 
already. TR practitioners come from varied discipline com-
munities and make use of myriad analytical predictive ap-
proaches, including text-mining, machine learning, network-
based, semantics, ligand-binding/ligand-protein docking/
binding-site focused, protein targeting and transcriptional 
signature-focused. The main diseases studied are cancer, neu-
rodegenerative and infectious. TR may be equally important 
for the rare diseases, where the modest number of potential 
patients may not justify the expense to the manufacturers of 
separate new drug development. The main biomarker targets 
studied focus on oxidative stress and inflammatory metrics. 

The LRD-TR approach has evolved from its initial structure 
in 2008[1] to the more advanced and targeted process described 
in the present article. It has the capability to generate volumi-
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Appendix 1: Query for Identifying Potential AD 
Repurposed Treatments. 

The most general form of the TR query can incorporate any 
number of biomarkers and other markers of interest. For AD, 
a two-biomarker query was deemed adequate for demonstra-
tion purposes. The generic form of the two biomarker AD 
treatment repurposing query is 

(A and B) not (C or D), where

A is a biomarker and its associated desired direction of change

B is another biomarker and its associated direction of change

C is the query used to retrieve the AD core literature

D is a list of existing AD treatments identified in the initial 
part of the AD study

Thus, the combination (A and B) retrieves ALL records from 
the full biomedical literature that contain potential AD treat-
ments based on the two desired characteristics A and B, while 

(C or D) subtracts those records and existing treatments asso-
ciated with the AD core literature. The remainder is non-AD 
records with substances that could be candidate repurposed 
AD treatments, based on the requirement that A and B must 
be present.

Twenty of the more than 200 biomarkers identified in the AD 
study (through text mining techniques) were selected for the 
query. The query was run in Thompson-Reuters-Medline, 
since its search engine allows for proximity searching (e.g., 
[direction] within three words of [biomarker], or [direction] 
near/3 [biomarker]). In modular form, each query term is 
shown as follows:

	 #1 - (reduc* OR decreas* OR prevent* OR attenuat* 
OR suppress* OR alleviat* OR ameliorat*) near/3 “oxidative 
stress”

	 #2 - (reduc* OR decreas* OR prevent* OR attenuat* 
OR suppress* OR alleviat* OR ameliorat*) near/3 “apoptosis”
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The final query entered into the search engine (could have 
been condensed) was:

(#1 AND (#2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 
OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 
OR #16 OR #17 OR #18 OR #19 OR #20)) NOT (#21 OR 
#22)

(#2 AND (#3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 
OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 
OR #17 OR #18 OR #19 OR #20)) NOT (#21 OR #22)

(#3 AND (#4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 
OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 
OR #18 OR #19 OR #20)) NOT (#21 OR #22)

(#4 AND (#5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 
OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 
OR #19 OR #20)) NOT (#21 OR #22)

(#5 AND (#6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 
OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 
OR #20)) NOT (#21 OR #22)

(#6 AND (#7 OR #8 OR #9 OR #10 OR #11 OR #12 OR 
#13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR 
#20)) NOT (#21 OR #22)

#7 AND (#8 OR #9 OR #10 OR #11 OR #12 OR #13 OR 
#14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20)) 
NOT (#21 OR #22)

(#8 AND (#9 OR #10 OR #11 OR #12 OR #13 OR #14 OR 
#15 OR #16 OR #17 OR #18 OR #19 OR #20)) NOT (#21 
OR #22)

(#9 AND (#10 OR #11 OR #12 OR #13 OR #14 OR #15 
OR #16 OR #17 OR #18 OR #19 OR #20)) NOT (#21 OR 
#22)

(#10 AND (#11 OR #12 OR #13 OR #14 OR #15 OR #16 
OR #17 OR #18 OR #19 OR #20)) NOT (#21 OR #22)

(#11 AND (#12 OR #13 OR #14 OR #15 OR #16 OR #17 
OR #18 OR #19 OR #20)) NOT (#21 OR #22)

(#12 AND (#13 OR #14 OR #15 OR #16 OR #17 OR #18 
OR #19 OR #20)) NOT (#21 OR #22)

(#13 AND (#14 OR #15 OR #16 OR #17 OR #18 OR #19 
OR #20)) NOT (#21 OR #22)

(#14 AND (#15 OR #16 OR #17 OR #18 OR #19 OR #20)) 
NOT (#21 OR #22)

(#15 AND (#16 OR #17 OR #18 OR #19 OR #20)) NOT 
(#21 OR #22)

(#16 AND (#17 OR #18 OR #19 OR #20)) NOT (#21 OR 
#22)

	 #3 - ((protect* OR improv* OR enhanc* OR restor* 
OR preserv*) near/3 “mitochondrial function”) OR ((reduc* 
OR decreas* OR prevent* OR attenuat* OR suppress* OR al-
leviat* OR ameliorat*) near/3 “mitochondrial dysfunction”)

	 #4 - (inhibit* OR reduc* OR attenuat* OR decreas*) 
near/3 “BACE1”

	 #5 - (modulat* OR attenuat* OR reduc* OR inhibit* 
OR decreas*) near/3 “gamma-secretase”

	 #6 - (enhanc* OR increas* OR improv* OR protect*) 
near/3 “autophagy”

	 #7 - (attenuat* OR reduc* OR prevent* OR inhibit*) 
near/3 (“caspase* activ*” OR “caspase* express*”)

	 #8 - (increas* OR restor* OR enhanc*) near/3 “Bcl-2”

	 #9 - (attenuat* OR reduc* OR inhibit* OR decreas* 
OR prevent*) near/3 “NF-kappaB”

	 #10 - (increas* OR enhanc* OR restor*) near/3 
“ADAM10”

	 #11 - (increas* OR restor* OR enhanc*) near/3 
“CREB”

	 #12 - (inhibit* OR decreas* OR reduc* OR attenuat*) 
near/3 “GSK-3”

	 #13 - (increas* OR enhanc* OR restor*) near/3 
“GLP-1”

	 #14 - (increas* OR enhanc* OR restor*) near/3 
“ABCA1”

	 #15 - (increas* OR enhanc* OR restor*) near/3 “nor-
epinephrine”

	 #16 - (increas* OR enhanc* OR restor*) near/3 “Nrf2”

	 #17 - (increas* OR enhanc* OR restor*) near/3 “sela-
din-1”

	 #18 - (increas* OR enhanc* OR restor*) near/3 
“LRP1”

	 #19 - (increas* OR enhanc* OR restor*) near/3 
“SIRT1”

	 #20 - (attenuat* OR reduc* OR inhibit* OR decreas*) 
near/3 “beclin1”

NOT ((#21 - alzheimer* OR dementia OR “mild cognitive 
impairment”) [Core AD Literature] 

	 OR 

Existing AD Treatments (see full list of the existing AD treat-
ments that wre used in Appendix 6-1 of the AD study)
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sub-themes of personal interest within the cluster. The full 
reference for each title is provided in Chapter 4 of the same 
referenced document, which will allow the reader to pursue 
the full text for further information.

Before the details of the 32 ‘leaf’ (lowest level) clusters are pre-
sented, a high-level (top three levels) view of the TR text clus-
tering taxonomy is shown in Table A2-1.

Table A2-1: Top-level TR Text Clustering Taxonomy. 

(number of records in each cluster shown in parenthesis ())

SECOND LEVEL THIRD LEVEL FOURTH LEVEL

Cluster 58 (1096)
Drug repurposing 
prediction

Cluster 51 (439) - Gene 
expression; protein 
interaction network

Cluster 35 (193) - Drug-
disease associations; 
protein interaction 
networks

Cluster 41 (246) - Gene 
expression; genome 
wide association

Cluster 56 (657) - 
Drug-target interaction

Cluster 48 (276) - 
Drug-target interaction; 
protein-protein 
interaction

Cluster 49 (381) - 
Computer-aided drug 
repositioning; drug 
discovery

Cluster 61 (1793)
Disease treatment

Cluster 59 (569) 
- Drug-resistant 
tuberculosis; infectious 
diseases

Cluster 7 (114) - Drug-
resistant tuberculosis 

Cluster 57 (455) - Viral/
bacterial infections; 
parasites

Cluster 60 (1224) 
- chronic disease 
treatments; cancer; 
neurodegenerative 
diseases

Cluster 52 (590) - 
Cancer treatment

Cluster 55 (634) - 
Neurodegenerative 
disease treatment

The first bifurcated level of the hierarchical taxonomy shows 
two definite thrust areas: Methods for drug repurposing pre-
diction (Cluster 58) and disease treatments that resulted from 
drug repositioning (Cluster 61). The next two levels of the 
hierarchy are self-explanatory.

Table A2-2 relates the eight fourth-level clusters shown above 
in Table A2-1 to the 32 elemental leaf clusters.

Table A2-2: Lowest Level TR Text Clustering Taxonomy.

(number of records in each cluster shown in parenthesis (); this number is hy-
perlinked to the actual record titles)

FOURTH LEVEL LOWEST LEVEL (LEAF CLUSTERS)

Cluster 35 (193) - Drug-
disease associations; 
protein interaction 
networks

Cluster 4 (47) - drug-disease associations

Cluster 18 (146) - network-based prediction, 
especially protein interaction networks

Cluster 41 (246) 
- Genome-wide 
associations; gene 
expression

Cluster 16 (65) - genome-wide associations

Cluster 21 (181) - gene expression, especially gene 
expression signatures and gene expression profiles

(#17 AND (#18 OR #19 OR #20)) NOT (#21 OR #22)

(#18 AND (#19 OR #20)) NOT (#21 OR #22)

(#19 AND (#20)) NOT (#21 OR #22)

Many thousands of candidate repurposed AD treatment re-
cords were retrieved. While five were selected and validated, 
many more were available.

The AD study generated ~200 biomarkers and ~50 symptoms. 
The 20 terms selected for the above query were all biomark-
ers. The PN/PAD study, building off the experience from the 
AD study, has identified ~750 biomarkers and ~250 symp-
toms. More are still possible.

For a query consisting of 20 terms, there are 190 combinations 
of two, according to the binomial coefficient. Assume that, for 
the disease of interest, there are 750 credible biomarkers, as in 
our ongoing study. Then, using all 750 terms in the query, 
there would be 280,875 combinations of two.

Many of these combinations, where each member has low re-
cord frequency in the literature, would probably yield very 
little or no retrievals. But, combinations of high frequency 
terms would yield voluminous results. For more focus, com-
binations of three or four could be used, but these would have 
to consist of mid-to high record frequency terms to provide 
significant retrievals.

Appendix 2: TR Literature Taxonomy based on Text 
Clustering.

Overview of TR text clustering literature taxonomy

The 2890 Medline records that constitute the core TR (mainly 
drug repurposing) literature were sub-divided into a 32-clus-
ter hierarchical taxonomy using the CLUTO text clustering 
software [CLUTO, 2018]. Both the top-level aggregated 
clusters in the taxonomy (Table A2-1) and the 32 elemental 
clusters (the lowest and most detailed level of the taxonomy-
Table A2-2) will be presented in the following sections. 

The version of CLUTO used for this analysis does not include 
fuzzy clustering, so each record is assigned to one cluster only. 
Many records contained multiple themes and could have been 
assigned to more than one cluster. Nevertheless, the taxono-
my does provide a unique and interesting perspective on the 
structure of the TR literature.

The themes of the clusters shown in Tables A2-1 and A2-2 
are, of necessity, very broad. In Appendix 2 of (Kostoff RN. 
Treatment Repurposing using Literature-Related Discovery. 
Georgia Institute of Technology. 2018. PDF. https://smart-
ech.gatech.edu/handle/1853/60507), the titles are provided for 
each of the 32 elemental clusters shown in Table A2-2, to 
provide the full spectrum of sub-themes within each elemen-
tal cluster and allow the interested reader to identify specific 
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Appendix 3: TR Literature Taxonomy based on Factor 
Analysis.

Overview of TR literature taxonomy based on Factor 
Analysis

The previous appendix provided one perspective (text clus-
tering) on the taxonomic structure of the TR literature. The 
CLUTO text clustering software incorporates all phrases (mi-
nus stop-words) and uses one selected algorithm to gener-
ate a hierarchical taxonomy. Another approach providing a 
complementary perspective on the TR literature structure is 
factor analysis. Here, only pre-selected phrases are used. 

The present appendix contains the results of a 37-factor study, 
where three of the factors define strong themes (high factor 
loadings) at each end of the phrase list (Factors 5, 8, 11). The 
main theme of each factor is presented here. A full factor ma-
trix that identifies the main theme of each factor (and shows 
the key phrases that determine each theme) is presented in Ap-
pendix 3 of (Kostoff RN. Treatment Repurposing using Lit-
erature-Related Discovery. Georgia Institute of Technology. 
2018. PDF. https://smartech.gatech.edu/handle/1853/60507). 
In this reference, the titles of the records associated with each 
of the key phrases in the 37 themes is presented as well.  The 
factor analysis was conducted using the Vantage Point soft-
ware (thevantagepoint.com).

Results of Factor Analysis

While many broad thematic categories were possible, four ap-
peared to be dominant. These included: Repurposing Predic-
tion Methodologies, Diseases, Biomarker Targets and Drug 
Types. Figure A3-1 lists all the 37 factor themes. The main 
diseases studied are cancer, neurodegenerative and infectious. 
The main biomarker targets studied focus on oxidative stress 
and inflammatory metrics. While drugs of many different 
classes have been researched for repurposing, the main drug 
classes as emphasized in Figure A3-1 are inhibitors of myriad 
signaling pathways. Finally, the main repurposing prediction 
methodologies studied focus on networks, similarity, machine 

Cluster 48 (276) - 
Drug-target interaction 
prediction; protein-
protein interaction

Cluster 13 (100) - drug-target interaction 
prediction

Cluster 22 (176) - ligand binding-sites, protein-
ligand interactions and protein-protein 
interactions

Cluster 49 (381) - 
Computer-aided drug 
repositioning; drug 
discovery

Cluster 9 (37) - rare diseases

Cluster 20 (91) - computational drug repositioning

Cluster 26 (86) - marketing aspects of drug 
repurposing

Cluster 29 (167) - drug development and discovery

Cluster 7 (114) - Drug-
resistant tuberculosis

Cluster 7 (114) - drug-resistant tuberculosis

Cluster 57 (455) - Viral/
bacterial infections; 
parasites

Cluster 1 (41) - antiviral treatments for viral 
infections, especially Ebola virus

Cluster 0 (21) - antiviral treatments for viral 
infections, especially Zika virus

Cluster 15 (80) - antiviral treatments for other viral 
infections, especially dengue virus, hepatitis B virus, 
chikungunya virus, human immunodeficiency 
virus, japanese encephalitis virus, rift valley 
fever virus, human cytomegalovirus, respiratory 
syncytial virus, west nile virus

Cluster 14 (62) - treatments for parasites, especially 
trypanosoma cruzi, african trypanosomiasi, 
trypanosoma brucei, leishmania amazonensi

Cluster 19 (93) - treatments for parasites, especially 
plasmodium falciparum, schistosoma mansoni, 
toxoplasma gondii

Cluster 6 (45) - antifungal treatments

Cluster 17 (113) - antimicrobial and antibiotic 
treatments for infections

Cluster 52 (590) - 
Cancer treatment

Cluster 23 (93) - repurposing kinase inhibitors, 
especially for treatment of acute myeloid leukemia

Cluster 12 (59) - ovarian cancer treatments, 
especially niclosamide

Cluster 27 (160) - treatments that destroy cancer 
cells

Cluster 25 (171) - anti-cancer treatments

Cluster 5 (41) - treatments for pancreatic cancer, 
especially Metformin

Cluster 11 (66) - breast cancer treatments

Cluster 55 (634) - 
Neurodegenerative 
disease treatment

Cluster 2 (48) - Alzheimer’s Disease treatments

Cluster 8 (30) - neurodegenerative disease 
treatments, especially Parkinson’s Disease

Cluster 24 (117) - treatments for brain disease, 
especially stroke

Cluster 3 (33) - drug repurposing patent 
applications

Cluster 10 (46) - glioblastoma treatments

Cluster 31 (151) - anti-inflammatory treatments

Cluster 28 (97) - treatments for addiction disorders 
(especially alcohol use) and chronic pain

Cluster 30 (112) - cancer treatments, especially 
metronomic chemotherapy

1. In vitro Experiments of Repurposed Drug Candidates on Cancer Cell 
Lines
2. Gene Expression Signatures for Predicting Repurposed Drugs
3. Antiviral Protease Inhibitors for Cancer Therapy
4. Neurodegenerative Diseases Biomarkers for Repurposing Targets
5a. Antifungal Applications of Non-Antifungal Drugs
5b. Network-Based Approaches to Drug Repositioning
6. Antimicrobial Applications of Repurposed Drugs
7. Repurposed Drugs or Antifungal Applications
8a. Use of Cellular Signatures Library to Provide Gene Expression Profiles 
for Drug Repurposing Prediction
8b. Ligand-Based Target Inference
9. Binding Site Analysis for Drug Repurposing
10. Antiinflammatory Applications for Repurposed Drugs
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11a. Biomarkers for Repurposed Drug-Enhanced Apoptosis of Cancer Cells
11b. Repurposed Drugs for Oxidative Stress Reduction
12. Repurposed Drugs that Increase or Decrease ROS for Different Applications
13. Similarity Searching of Ligand-Target Sets for Drug Repurposing
14. AMPK Activation for Cancer Treatment, Emphasizing Anti-Diabetic Drug Metformin
15. Repurposing of Cholesterol-Lowering Drugs for Chronic and Infectious Diseases
16. Similarity-Based Methods for Drug Repurposing
17. Machine Learning-Based Drug Repurposing Prediction
18. Tyrosine Kinase Inhibitors Repurposed for Cancer Treatment
19. Chemical Structure Similarity for Repurposing Prediction
20. Network-Based Inference for Predicting Drug-Target Interaction
21. Drug Repurposing for Viral Diseases
22. Drug Repurposing for Anti-Parasitic Applications
23. Phosphodiesterase Inhibitors Repurposed from Predicitions of Drug Response Signatures
24. Inhibiting NF-KappaB Signaling for Cancer and Inflammation Treatment
25. Repurposing Based on Comprehensive Multi-Metric Similarity Measures
26. Genome-Wide Association-Based Networks for Repurposing
27. Drug Repurposing for Brain Cancer
28. Repurposing Anthelmintic Drugs for Cancer Treatment
29. Drug Repurposing for Neurodegenerative Diseases
30. Repurposed Drugs Targeting Glutamate Receptors
31. Repurposing Drugs that Target Oxidative and Inflammation Biomarkers VEGF, HO-1, iNOS, Nrf2
32. Computational Drug Repositioning Based on Similarity Networks
33. Repurposing Antipsychotic Drugs
34. Multiple Ligand Simultaneous Docking and Drug Repositioning for Cancer Therapy


