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OVERVIEW

Text mining is the extraction of  useful information from 
large volumes of  text. Science and technology (S&T) 
text mining focuses on the S&T literature, mainly in 
electronic form. This review will address three major 
text mining sub-divisions: Characterization; Seminal 
Literature Review (SLR); Literature-Related Discovery 
and Innovation (LRDI), and will be divided into two 
separate papers. Part I, published in this inaugural issue 
of  The Journal of  Scientometric Research, will focus on 
Characterization, mainly its non-citation components. 
Part II, published in the second issue of  the Journal of  
Scientometric Research, will focus on the citation com-
ponent of  Characterization, the citation-based SLR, and 
the citation-enabled LRDI.

Characterization is the assignment of  metrics to the tech-
nical literature of  interest to identify patterns that will 
increase understanding of  the topical matter. These met-
rics may include: 1) bibliometric quantities such as key 
authors, journals, institutions, countries; 2) the relation-
ships among these bibliometric quantities, such as insti-

tutions whose authors frequently co-publish; 3) technical 
quantities such as key technical thrusts and the relation-
ships among the thrusts. While isolated metrics may have 
specific uses, the key challenges are to identify ‘signa-
tures’, or combinations of  metrics, that provide unique 
insights into technology literatures or to countries’ tech-
nology portfolios.

SLR is identifying the key papers that provide the 
intellectual heritage of  a topic or discipline, and relat-
ing these documents in narrative form to display 
the evolution and breadth of  the discipline. The 
Citation-Assisted Background (CAB) approach 
(Kostoff  and Shlesinger, 2005b) was developed to 
assist the SLR process, but CAB and SLR require sub-
stantial human judgment to supplement the mechanis-
tic algorithms developed.

LRDI relates disparate literatures to identify novel con-
cepts that provide value-added to problem solving. LRDI 
has been mainly applied to challenging medical prob-
lems, but can be applied to the technical non-medical 
literature as well (Kostoff  et al, 2008a; Kostoff, 2012a). 
Its main operational modes are: 1) start with a problem 
and search for a solution; 2) start with a technology and 
search for an application; 3) start with two problems 
and search for common features; 4) start with a prob-
lem and a solution, and search for the mechanism(s) 
by which the solution addresses the problem. Other 
variants are possible as well.
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ABSTRACT
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ANALYSIS

Characterization

This review focuses on text mining methodologies devel-
oped by the author’s research group. There were two 
main types of  characterization text mining studies, based 
on sponsor interest. One type characterized a technical 
discipline/technology, and the other type characterized 
a country’s S&T portfolio. The main difference in the 
actual study mechanics was in the query for retrieving the 
database to be analyzed.

For the country studies, the address field of  the records in 
the database(s) was examined, and if  at least one author 
of  a document was listed as being from the country of  
interest, that document was included in the retrieval. 
Given researcher mobility among institutions, perma-
nently or transiently, there was obviously some ambigu-
ity introduced by this approach, but for examining large 
numbers of  records, there were no feasible alternatives. 
In addition to the two types of  characterization studies 
above, targeted scientometric studies were performed, 
mainly searching for messages contained in citations. 
Selected examples from all these studies will be presented.

For the technology studies, an iterative relevance feedback 
technique developed in the 90s (Kostoff  et al, 1997a) was 
used to generate the query for retrieving documents. The 
iterative procedure started with postulating a simple test 
query, which was then inserted into the database search 
engine The retrieved records were examined for relevance 
and associated patterns, the test query was then modified 
with these patterns, and the process was repeated until 
convergence (few new relevant records retrieved with 
added iterations).

In both the technology and country characterization 
studies, similar core metrics were evaluated: key authors, 
institutions, journals, countries, etc, key research thrusts 
and the relationships among those thrusts. This review 
will provide a few of  the more interesting findings from 
the 2006 nanotechnology study (Kostoff  et al, 2007e, 
2011a) and the 2009 China study (Chen et al, 2009). It 
will also provide interesting findings from a text min-
ing study that doesn’t fit neatly into any one of  the cat-
egories described above, namely, the Military Relevant 
Technologies study that straddles scientometrics query 
development and LRDI (Kostoff  and Bhattacharya, 
2010). For details on technology characterization studies 
other than those mentioned above, the following refer-
ences are recommended: Electrochemical Power Sources  

(Kostoff  et al, 2002); Nonlinear Dynamics (Kostoff   
et al, 2004a); Fractals (Kostoff  et al, 2004b); Power 
Sources (Kostoff  et al, 2005a); Anthrax (Kostoff  et al, 
2008c); SARS (Kostoff  and Morse, 2011b). For details on 
country characterization studies, the following references 
are recommended: Mexico (Kostoff  et al, 2005c); Finland 
(Kostoff  et al, 2006a); China/India (Kostoff  et al, 2007a, 
2007b, 2007c, 2007d); Brazil (Schoeneck et al, 2011).

Nanotechnology-2006

In the 2004-2005 time frame, the author’s group con-
ducted an initial global nanotechnology study based on 
2003 Science Citation Index/Social Science Citation Index 
(SCI)/(SSCI) data (Kostoff  et al, 2006c). Because of  the 
heightened world-wide interest in nanotechnology at the 
time, and specific interest in the 2003 study initial results, 
the author’s group was encouraged to conduct an even 
larger and more comprehensive study. In 2006, the 90+ 
term nanotechnology and nanoscience query (used in the 
previous nanotechnology study) was expanded to more 
than 300 terms. The bulk of  the query (used for the 2006 
study) consisted of  technical terms generated by the itera-
tive relevance feedback technique (Kostoff  et al, 1997a)  
described above for insertion into the SCI/SSCI Topic 
field. Two additional fields were accessed for the remain-
der of  the 2006 query. All journals with nano* in their 
title were retrieved using the Source field, and all institu-
tions with nano* in their address were retrieved using the 
Address field. At the time, the full 2006 query was the 
most comprehensive nanotechnology query extant. This 
expanded query was inserted into the SCI/SSCI search 
engine for the year 2005, and resulted in retrieval of  
approximately 65000 records (Articles and Reviews only).

In the analysis, the core metrics listed above were exam-
ined, including most prolific authors, journals containing 
most nanotechnology papers, institutions and countries 
producing most nanotechnology papers, etc. In some of  
the cross-plots that included journals (e.g., institution-
journal matrices), journal Impact Factors were incorpo-
rated. For example, the leading five institutions based on 
the number of  nanotechnology publications were listed 
along with the five journals in which they published 
nanotechnology articles most frequently in 2005. The 
journals and institutions were shown with their Impact 
Factors and the number of  articles published. Then, an 
average Impact Factor was calculated for each institu-
tion as a weighted average of  the five Impact Factors and 
numbers of  publications listed. This weighting approach 
was a first step in introducing ‘quality’ to the publication 
metrics.
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A substantial amount of  categorization was performed. 
Institutions were grouped to see which ones collaborated 
heavily, countries were grouped for the same purpose, and 
records of  similar technologies were grouped to under-
stand the main technology thrusts and the relationships 
among the thrusts. Three main grouping approaches were 
used: document clustering, factor analysis, and correlation 
mapping. These approaches were always validated with 
the tried and true grouping by visual inspection. Each 
grouping approach provided a complementary perspec-
tive on the relationships, and all grouping approaches 
were included in the final narratives.

In document clustering, used mainly for identifying major 
technical thrusts, documents are combined into groups 
based on their text similarity. Document clustering yields 
the numbers of  documents in each cluster directly, a proxy 
metric for level of  emphasis in each taxonomy category. 
The specific document clustering software used (CLUTO, 
an abbreviation for CLUstering TOolkit) provides three dif-
ferent classes of  clustering algorithms that operate either 
directly in the object’s feature space or in the object’s simi-
larity space (Zhao and Karypis, 2005). These algorithms 
are based on the partitional, agglomerative, and graph-
partitioning paradigms. A key feature in most of  CLUTO’s 
clustering algorithms is that they treat the clustering problem 
as an optimization process that seeks to maximize or mini-
mize a particular clustering criterion function defined either 
globally or locally over the entire clustering solution space.

Two hundred and fifty-six individual clusters were chosen 
for the database of  65,000 nanotechnology articles and 
reviews retrieved from the SCI/SSCI, and are presented 
in detail in (Kostoff  et al., 2007e). The clustering algo-
rithm also agglomerated the 256 clusters in a hierarchical 
tree (taxonomy) structure, and this taxonomy (first four 
levels) is shown in Figure 1.

Figure 1.  Four level hierarchical taxonomy – nanotechnology.
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One feature that was not used in this study, but used in later 
non-nanotechnology studies with smaller databases, was citation 
searching. After retrieving articles with the text-based query, the 
most relevant articles were identified, and then the citation net-
work around each article was searched for more relevant articles. 
Thus, for relevant article x, its references, citing papers, and an 
SCI field called Related Records (all records in the database that 
have at least one reference in common with article x) would be 
searched. This allowed identification of  articles that had con-
cepts of  interest without having the exact words of  interest.
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Figure 1 is a four level hierarchical taxonomy of  the global 
nanoscience and nanotechnology literature. In each suc-
ceeding level, the categories are bifurcated. Categories 
with no shading are those in which the USA has the most 
publications. Categories with solid shading denote China 
publication lead, and categories with vertical bar shad-
ing denote Japan publication lead. Light shading means 
category leader has 100-125% of  USA publications 
(denoted by ‘modestly’ in results below); medium shading 
125-150% (denoted by ‘noticeably’ in results below); dark 
shading >150% (denoted by ‘strongly’ in results below).

In the first level (leftmost column), the total retrieved 
records are divided into two technical categories. One 
category (Quantum Phenomena, Optics, Electronics,  
Magnetism, Tribology, and Films) focuses mainly 
on physical phenomena, whereas the other category  
(Nanotubes, Nanomaterials, Nanoparticles, Polymers, 
Composites, Metal Complexes, and Bionanotechnology) 
focuses on materials and structures. The two categories 
are about the same size.

The primarily phenomena category sub-divides into two 
categories, with the larger category (phenomena) being 
roughly four times the size of  the smaller category (films). 
The materials and structures category likewise divides into 
two asymmetric categories, with the smaller sub-category 
focusing on nanotubes and the nine times larger category 
focusing on all other structures and materials. China has a 
modest publications lead in this latter category.

At the fourth level, China out-publishes the USA in:

•	 Properties of  Thin Films (modestly, 2251 rec)
•	 Diamond Films (modestly, 394 rec)
•	 Applications of  Carbon Nanotubes (strongly, 474 rec)
•	 Multi-Walled Nanotubes (modestly, 1876 rec)
•	 Nanomaterials and Nanoparticles (noticeably, 14263 rec)
•	 Polymers, Composites, and Metal Complexes (notice-

ably, 8423 rec)

Also at this level, Japan out-publishes the USA in Depo-
sition of  Thin Films. Note that identification of  these 
islands of  strength of  USA competitors required access-
ing more detailed levels of  the taxonomy.

In addition, fuzzy document clustering was run to iden-
tify medical applications. This fuzzy version allowed 
multi-theme records to be assigned to multiple catego-
ries. This is a particularly valuable feature for records 
that contain both research and applications themes, but 
is useful for any types of  records that contain more than 
one thrust area. The detailed medical applications can 

be found in (Kostoff  et al, 2007e; Kostoff  et al, 2011a; 
Kostoff  et al, 2008a).

Factor analysis of  a database aims to reduce the num-
ber of  variables in a system, and to detect structure in 
the relationships among variables. Correlations among 
variables are computed, and highly correlated groups  
(factors) are identified. The relationships of  these variables 
to the resultant factors are displayed clearly in the factor 
matrix, whose rows are variables and columns are factors. 
In the factor matrix, the matrix elements Mij are the fac-
tor loadings, or the contribution of  variable i (in row i) to 
the theme of  factor j (in column j).

The theme of  each factor is determined by those vari-
ables that have the largest values of  factor loading. Each 
factor has a positive value tail and negative value tail. For 
each factor, one of  the tails typically dominates in terms 
of  absolute value magnitude. This dominant tail is used 
to determine the central theme of  each factor. Factor 
analysis was used to quantify word or phrase, institution, 
and country collaborations. It was used extensively in this 
nanotechnology study, and in most of  the characteriza-
tion studies on other topics as well.

An autocorrelation function describes the correlation 
between a random function and a copy of  itself  shifted 
by some ‘lag’ distance. One can produce a map show-
ing terms that commonly occur together. For example, 
an autocorrelation map of  institutions shows teams of  
institutions that publish together. A cross-correlation 
map shows relationships among items in a list based 
on the values in another list. A cross-correlation map 
of  institutions and phrases can show groups of  orga-
nizations that write about the same things i.e., publish 
on the same technical themes. A cross-correlation map 
of  countries and phrases can show groups of  nations 
that write about the same things. Both types of  maps 
were used extensively in the nanotechnology study, and 
in some of  the later characterization studies on other 
topics.

There were two advances of  note in this study; both will 
be illustrated.

Identifying new categories
The various grouping approaches listed above tend to 
group by disciplines, emphasizing those determined by 
the algorithms. But, some categories of  interest may be 
applications-oriented, consisting of  many disciplines 
(e.g., military relevant technologies), or may be non-appli-
cations non-discipline oriented (e.g., instrumentation), 
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and these categories may not be readily obtainable by the 
grouping approaches above.

After the 65000 records were retrieved, and some initial 
grouping analyses had been performed, a list of  catego-
ries that was deemed important but could not be iden-
tified sharply using the above grouping approaches was 
generated (e.g., instrumentation, materials, properties, 
phenomena, nanostructures, non-medical applications). 
To populate each category with relevant phrases, the fol-
lowing approach was taken. One of  the options in the 
TechOasis text analysis software used was identification 
of  all single, double, triple, and quadruple adjacent word 
phrases in the text being analyzed (all phrases beginning or 
ending with ‘stop-words’ from a pre-determined list were 
eliminated), along with the frequency of  each phrase’s 
appearance in the text. The list of  phrases and their fre-
quencies was generated (phrase frequency analysis), and 
the 60,000 highest frequency phrases were inspected visu-
ally. Phrases deemed relevant to any of  the pre-selected 
categories were assigned manually to that category. While 
this procedure was manually intensive and time-consum-
ing, the resulting database of  categories and their phrases 
was unmatched by any other in the field. Having such a 

database allowed cross-plots of  this data with each other, 
with existing technical categories, and with existing bib-
liometric categories. Because of  modifications that had 
been made to the CLUTO document clustering soft-
ware, phrases for any of  the defined categories of  inter-
est (e.g., instrumentation) could be entered by themselves 
only, and clustering could be performed for only those 
records that addressed e.g. instrumentation. Figure 2 
shows a four-level hierarchical taxonomy for nanotech-
nology instrumentation (Kostoff  et al, 2007f). As can be 
seen from Level 1 (left-most column), there were only 
~27,500 records related to nanotechnology instrumenta-
tion out of  the 65,000 total. For all the cross-plots and 
cross-correlation maps that were made with these and 
other categories, the interested reader is advised to see 
(Kostoff  et al, 2011a; Kostoff  et al, 2007e).

Optimal display frequency ranges
This is an area that has received little attention in scien-
tometric analysis. In many cross-plots and network maps, 
so much information is presented as to make the display 
almost unintelligible. In the nanotechnology study, it was 
found that, by using selected portions of  the frequency 
spectrum for plotting, much sharper and intelligible 

Figure 2.  Four level taxonomy - nanotechnology instrumentation.
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displays were possible, and much more information could 
be transmitted as well. One example will suffice.

Figure 3 is a cross-correlation map of  institutions and 
cited journals. It shows how institutions are linked indi-
rectly through their direct linkages with journals their 
researchers cite in publications. The thirty institutions 
with the most publications were cross-correlated with 
the 500 journals cited most frequently, and the resultant  
‘spaghetti’ map on Figure 3 made detailed relation-
ships difficult to ascertain. The readers may want to 
contemplate how many network plots they have seen 
that are almost unintelligible due to the density of  data  
presented.

Figure 4 is a cross-correlation map of  the top 30 insti-
tutions with the next 500 cited journals, and it provides 
a much clearer picture of  linkages that exist. Figure 4  
shows four clusters based on nationality: one Chinese,  
one Japanese, one American, and one European. 
Another point to note from Figure 4 is that the Chinese 

group is isolated from the other institutions, whereas the 
Japanese and the American institutions link to the Euro-
pean research centers, both through CNRS. Figure 3  
is essentially a demonstration in visual terms that all 
the institutions are citing the same most cited journals 
heavily (almost by definition), and because of  the cita-
tion level and generality of  these highly cited journals, 
this portion of  the cited journal frequency spectrum 
is not optimal for helping to identify institutional rela-
tionships. Figure 4 shows much better discrimination 
possible when operating at a mid-frequency spectrum, 
where more focused but less cited journals help to 
emphasize institutional relationships based on common  
technologies.

Other cross-correlation variables were examined, such as 
phrases, and similar results to those above were found. 
There is obviously a role for using the highest frequency 
cited journals, phrases, etc, in the text mining analyses, 
but there is also a role for mid and perhaps even low fre-
quency ranges of  these variables.

Figure 3.  Institution-cited journal cross-correlation map (2005) (cited journals 1-501).
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Comparison of China’s S&T Program to USA

S&T assessment at the nation-state level is important 
from many perspectives. It can provide some under-
standing of  a nation’s military potential, which is 
useful for defense planning. It can also provide under-
standing of  a nation’s commercial potential, which 
is useful for competitiveness. Finally, it can identify 
areas of  S&T that can be leveraged and coordinated 
for mutual benefit.

What are the central principles in conducting an S&T 
assessment? In The Handbook of  Research Impact 
Assessment (Kostoff, 1997b), three foundational S&T 
assessment metrics are identified, whether for a project, 
a program, or a nation’s total S&T output. These three 
metrics can be summarized as right job, job right, and 
productivity/progress. ‘Right job’ addresses the over-
all investment strategy: Are the larger S&T objectives 
being addressed correctly? ‘Job right’ addresses the S&T 

approach: Are the best techniques being used to conduct 
the S&T? ‘Productivity/progress’ addresses the S&T out-
put and impact.

In this high level S&T assessment, examples were pro-
vided of  how to use these metrics to rapidly assess the 
S&T of  a scientifically growing country—namely, the 
People’s Republic of  China. To place the assessment in 
context, China’s metrics were compared with those of  
the leader in S&T output, namely, the USA. Much more 
detailed expositions of  the use of  these metrics in assess-
ing China’s S&T output are available elsewhere (Kostoff  
et al, 2006b, 2007a, 2007c, 2008d).

Right job
S&T strategy, as reflected in published technical output in 
the global literature, can be inferred from different per-
spectives. Clustering documents by technical discipline 
provides one categorization approach, and it is perhaps 
the main approach used.

Figure 4.  Institution-cited journal cross-correlation map (2005) (cited journals 502-1003).



Dr. Ronald N. Kostoff: Text mining for science and technology – a review part I – characterization/scientometrics

18� J Scientometric Res. | Sep–Dec 2012 | Vol 1 | Issue 1

A complementary approach is to show relative areas of  
technical emphasis among multiple countries. The SCI 
includes a Subject Category field for each record—that 
is, for each article published. This field indicates the main 
technical discipline for the journal in which the article was 
published. In 2009, the Subject Category distribution for 
the 100,000 most recent articles (ending 31 December  
2008) published in the SCI from China and the US was 
examined. The Subject Categories and their frequen-
cies were downloaded. For each of  almost 500 catego-
ries, the ratio of  China’s frequency to that of  the US was 
computed, and then the list was sorted according to the 
China/US ratio.

The results, which have been replicated by other means 
and for other databases, show China’s strong relative 
emphases in the physical and engineering sciences and the 
US emphases in the biomedical, social, and psychological 
sciences (Chen et al, 2009). If  these results are coupled 
with China’s strong production of  technical graduates, 
then China’s investment strategy is providing a solid tech-
nology-based foundation for future military and commer-
cial competitiveness.

Job right
The second metric addresses research quality. The only 
universally accepted indicator of  publication quality is 
a panel of  experts reviewing a specific document. One 
commonly used proxy metric for quality is the number of  
times other research articles cite an article. The citation 
trend of  China’s published articles in nanotechnology, an 
area of  strong emphasis in Chinese research, was exam-
ined (Kostoff  et al, 2008d). The citation quality (percent 
of  publications in the top citation tier) was low relative to 
that of  the US, but it grew monotonically within a five-
year period—from 4 percent of  the US figure in 1998 to 
20 percent in 2003, the latest period examined.

Another approach to assessing relative quality is to exam-
ine publication trajectories in high-quality journals. For 
these journals, articles must exceed a quality threshold to 
be accepted. There were three criteria used for selecting 
journals to include in this assessment: high total citations, 
high citations per paper, and focus on specific physical 
science disciplines. The ratios of  the number of  Chinese 
to USA articles published in two important SCI/SSCI 
journals—namely, the Journal of  the American Chemical 
Society (JACS) and the Journal of  Applied Physics (JAP), 
were compared (Chen et al, 2009).

Over the past decade, the China/USA ratio for total SCI/
SSCI nanotechnology articles grew by about a factor of  

eight; the ratio for JACS articles grew by an order of  
magnitude, and the ratio for JAP articles grew by more 
than a factor of  five. These quality findings reflect results 
from earlier studies (Kostoff  et al, 2006b, 2007a, 2007c,  
2008d). However, those studies also showed many  
Chinese articles being published in low-Impact-Factor 
journals. From the 2009 study (Chen et al), it was con-
cluded that a small high-quality component is paralleling 
rates of  increase that match the overall growth in Chinese 
technical literature.

Productivity/progress
By any measure, China’s productivity in published techni-
cal papers over the past two decades has been astound-
ing. The bottom curve in Figure 5 (Chen et al, 2009) 
shows outstanding relative total publication growth. The 
absolute publication growth numbers are equally impres-
sive. However, aggregate statistics have limited value for 
operational decision making. For bibliometrics, specific 
investment spikes must be identified to infer the true 
importance of  an investment strategy.

Figure 5 provides an example of  what can be derived 
from different levels of  aggregation. The bottom curve, 
showing the overall China/USA publication ratio, 
indicates that China lags the USA in total SCI publi-
cations by a factor of  three. The middle curve (ratio 
of  overall nanotechnology publications) shows relative 
growth similar to the overall relative growth pattern, 
albeit starting at a higher relative level due to China’s 
emphasis on nanotechnology. By this metric, China 
has essentially obtained parity with the USA in over-
all nanotechnology publication production (in fact, a 
recent analysis shows China to be about twenty percent  
ahead of  the USA in nanotechnology publica-
tions at the end of  2011 (Kostoff, 2012b)). The top 
curve, for the important nanotechnology sub-area of   

Figure 5.  Ratio of  China/USA articles in nanotechnol-
ogy at different aggregation levels.
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nanocomposites, shows a substantially higher (and 
linear) rate of  ratio increase relative to the other two 
curves. By this metric, China is 60 percent ahead of  
the USA in nanocomposites publication production 
(increased to 130% ahead of  the USA in nanocompos-
ites publications by the end of  2011 (Kostoff, 2012b)). 
At this level of  detail, the analyst can examine specific 
investment spikes, such as nanocomposites, and start 
to connect the dots to identify the investment strategy 
priorities on an integrated basis.

S&T assessment at the project, program, or nation level 
can be very valuable. However, the analyst must be judi-
cious in selecting the appropriate metrics to evaluate the 
investment strategy, research approach, and productivity, 
and the appropriate level of  aggregation.

Identification of Military-Related Technologies

The goal of  this study was to identify the portion of  a 
country’s S&T portfolio that could be considered military 
relevant. Military relevant technologies cannot typically 
be identified from a large group of  technologies using 
document clustering or factor analysis. These grouping 
methods tend to provide discipline breakdowns, whereas 
military-relevant, space-relevant, intelligence-relevant, 
etc., have application orientation.

In the first step of  a two-step approach, an iterative rel-
evance feedback approach (Kostoff  et al, 1997a) was 
taken to generate a query to retrieve military identifiable 
documents. These are documents that are unmistakably 
military-oriented, containing terms like artillery, aircraft 
carrier, fighter aircraft, weapons of mass destruction, 
etc. In the second step, an iterative relevance feedback 
approach was taken to generate a query to retrieve strongly 
military-related documents. These are documents that 
may or may not contain the military-identifiable terms, 
but the technologies within these documents are those 
that are strongly associated with the military-identifiable 
documents.

In the first step, terms like ‘military’ were used to query 
the Abstract and Keyword fields (in some cases, con-
trolled vocabulary fields as well), records were retrieved, 
phrases and phrase combinations that were unmistak-
ably military (e.g., artillery, aircraft carrier, etc) were 
extracted, added to the query, and the process was 
repeated until convergence. Initially, organization names 
(e.g., XXX military academy) were queried as well, but 
many of  the records retrieved were not sufficiently 
military-identifiable, so the organization/address field 
was not accessed further.

The second step proved to be much more difficult. The 
objective was to generate a query to retrieve strongly  
military-related documents. The approach selected was 
to identify technology text patterns that occurred in the  
military-identifiable records from the first step, and to add 
these text patterns to a query that would retrieve records con-
taining military-relevant technologies. Unfortunately, there 
were many types of  technology text patterns that could be 
extracted from the military-identifiable records, and these 
different text patterns resulted in different strengths of  rela-
tionships among the technologies in the records retrieved 
and their linkages to the military application.

For example, the simplest pattern was a list of  technology 
phrases extracted from the military-identifiable records 
by straight-forward phrase frequency analysis. This list 
was obtained by visual inspection of  all phrases con-
tained within the military-identifiable records, above a 
pre-selected threshold frequency of  occurrence. Selected 
phrases were entered into the Ei Compendex database 
search engine, and the records retrieved were sampled for 
military relevance.

In many cases (e.g., information technology, neural net-
works, signal processing), only a small fraction of  the 
retrieved records had a direct relationship to the military 
application, although one could argue that e.g. ‘signal pro-
cessing’ expertise focused on a non-military application 
could be readily transferable to a military application. The 
retrieval volume was quite large, given the broad coverage 
of  the technologies identified.

The next simplest pattern was a variant of  the first, 
whereby more detailed stand-alone phrases were extracted. 
Thus, instead of  extracting ‘signal processing’ as above, a 
specific variant like ‘radar signal processing’ that might be 
more targeted to a military application was extracted. A 
query spanning six pages in length was generated, consist-
ing of  ~1600 words or approximately 500-600 long multi-
word phrases. Again, hundreds of  thousands of  records 
were retrieved, with perhaps a slightly higher fraction of  
military-relevant documents, but still relatively low.

The final two patterns examined were phrase combina-
tions. The first combination approach was inspired by the 
LRDI methodology (Kostoff, 2012a, 2012b), whereby 
document clustering or factor analysis was performed 
on the military-identifiable documents, and combinatori-
als of  the key technologies in each cluster or factor were 
used as a query. This approach yielded records somewhat 
closer to what was desired, but still of  insufficient military 
specificity.
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The second combination approach (which was used in 
the study) was derived as follows: A list of  the key tech-
nologies in the military-identifiable records was generated 
by visual inspection of  the phrases in these records (e.g., 
‘signal processing’, ‘information technology’, ‘synthetic 
aperture radar’, ‘neural network’, ‘wireless networks’, etc). 
A second list of  desired functions or actions of  more spe-
cific technologies was generated by visual inspection of  
the phrases in these records (e.g., ‘target identification’, 
‘intrusion detection’, ‘obstacle avoidance’, ‘target recogni-
tion’, ‘active jamming’, etc). The two lists were matrixed 
against each other, and the potential combinations 
reflected by the contents of  each cell were broad tech-
nologies focused on achieving a military-driven mission 
(e.g., ‘signal processing’ AND ‘target detection’, ‘genetic 
algorithms’ AND ‘feature extraction’, etc). This approach 
narrowed the retrieval considerably to strongly military-
relevant technologies. The methodology was applied to 
the Indian S&T literature, and provided some interest-
ing insights on the structure of  the Indian defense S&T 
establishment (Kostoff  and Bhattacharya, 2010).

Thus, it appears that classes of  technology document 
retrievals need to be defined with different degrees of   
military-relevance. The study was limited to retrieving the 
military-identifiable and strongly military-relevant tech-
nologies. To identify military-relevant research, the pro-
cess could be repeated, starting with the military relevant 
technologies and identifying linkages with military-related 
research.

DISCUSSION AND CONCLUSIONS

The three examples presented in this review are a micro-
cosm of  some of  the challenges faced in using sciento-
metrics to solve problems. The nanotechnology example 
showed the importance of  selecting variables that will 
directly address the questions of  interest, and in selecting 
ranges of  those variables to enhance the communication 
of  the research results. The China S&T example showed 
the importance of  selecting a minimum set of  the most 
important evaluation criteria for assessing the value of  a 
country’s S&T portfolio, and the military relevant tech-
nologies example showed the value of  a methodology for 
extracting technologies of  interest from a sea of  random 
technologies.

In the more general case, the scientometrics analyst is 
presented with questions of  interest (usually to spon-
sors or stakeholders of  one type or another), and 
has at his/her disposal an almost infinite amount of  

multi-dimensional multi-media data of  very differing 
levels of  quality with which to address the questions. 
The challenging decisions required in practice are: 1) 
which datasets to include; 2) how can one distinguish 
between reliable and unreliable data in the datasets 
selected for analysis; 3) which variables or combina-
tions of  variables should be selected to populate with 
data in order to answer the questions being raised; 4) 
how should data be extracted from the data sources 
selected to comprehensively and precisely populate the 
variables; and 5) how should the results of  this mas-
sive data retrieval and data analysis be presented most 
clearly to the sponsors/stakeholders?

The author reviews for a number of  technical and social 
sciences journals. Scientometrics articles invariably tend to 
be heavy on presentation of  data and light on the type of  
analysis described above. This lack of  real analysis, and 
especially lack of  combining the data vectors into insight-
ful ‘signatures’, limits the utility of  these scientometrics 
analysis, and raises the barriers to acceptance of  scien-
tometrics techniques by the scientific community. Much 
more research is required in identifying key variables to 
extract from massive blocks of  raw data, and how these 
variables can be combined into meaningful ‘signatures’ 
that will provide profound insights into superficially ran-
dom data.

This review has only scratched the surface of  what is 
possible in identifying variables and variable ranges of  
interest in a large body of  data, and in extracting data of  
interest from large amounts of  raw data. Hopefully, it will 
incentivize the community to generate far more complex 
protocols for achieving these ends.
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