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Relevance of Innovations in Machine Learning to 
Scientometrics
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ABSTRACT
Machine learning envisages building models that either classify, predict, cluster or  
determine the relative relevance of features to a problem and the associations  
between them. This paper briefy describes how these tasks are relevant to Sciento-
metrics. Through this brief survey of selected tasks, it is observed that most solution 
approaches in Scientometric literature are built on the strong foundation of under-
standing and debating in uencing factors and the process of feature engineering, 
requiring the descriptors to be intuitive and methods used for classication, prediction, 
etc., to be amenable to interpretation. Recent trends in machine learning, particularly, 
deep learning methods, however, pose an interesting question: can we build models 
that automatically determine what features are important and thereby bypass the 
step of feature engineering? This paper discusses how such techniques could also 
be harnessed in Scientometrics.
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INTRODUCTION

Most computational tasks in Scientometrics can be understood 
broadly to involve the design or application of features to gain 
an insight to the (relative) impact of innovation or research of 
institutions, scientists and avenues of knowledge dissemination  
(such as journals, conference proceedings, etc.). Eliciting  
relevant numerical descriptors for quantifying such impact 
seems to require a deep understanding of the influencing  
factors. For instance, the Hirsch number or h-index, a relatively  
popular measure for the citation index of an author, is computed as

max min( ( ), ),
k

c k k

where c(k) is the number of citations of the kth publication, 
listed in the descending order of citations.[1] This measure does 
not favor a large number of poor quality publications or a very 
small number of highly cited articles. Similarly, the THE-QS  

based on academic prestige through features that quantify the  
quality of teaching, research, citations, international outlook, etc.  
As with any quantitative measure, ever since these quantifiers  
were proposed, there have been several debates on the advantages,  
limitations and comparisons with alternatives or variations of 
these measures.[2-5] However, our interest in these measures is 
to note that the selection of features for such problems requires 
some knowledge of the domain world University rankings 
ranks institutions

Given the definition of each measure, automating their compu-
tation on relevant data is fairly straightforward. Indeed, it would 
appear that most tasks in Scientometrics involve computation 
of scores from data, once the measures are defined. However, 
when we are required to perform computations that build on 
the insight gained from past data for prediction (such as: predict 
the ranking of an institution at the end of the year, based on 
the measures computed a few months into the year) or tasks 
such as mining underlying patterns (for instance, what should 
an institution X focus on to improve its ranking in the coming  
years? what strategy should a publication employ to ensure  
articles in a particular area are read and cited?) or other descriptive  
tasks such as grouping institutions, individuals or journals with  
a similar subset of parameters or filtering publications in a certain  
research area, etc., techniques such as classification, regression,  
clustering, association rule-mining, etc., borrowed from machine  
learning prove to be useful.
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The subsequent section presents a brief survey of machine 
learning techniques used in Scientometrics, followed by a  
summary of the recent innovations in machine learning  
(particularly, the power of deep learning networks) and a  
discussion of their relevance to Scientometrics.

MACHINE LEARNING IN SCIENTOMETRICS

Machine Learning techniques can be broadly discussed under 
the heads of supervised and unsupervised learning. Supervised 
learning comprises tasks such as classification and prediction 
for which models are designed for training data with target 
annotations. Unsupervised learning or clustering deals with 
finding groups of similar data points. This latter task does 
not presuppose any annotation of the training data. The 
goal of supervised learning is to achieve a model that maps  
an input to its target output for the training set, replicating 
the logic behind the annotation process on test data and hence 
produce expected results. In the case of unsupervised learning,  
the goal is to group similar data points or partition the  
feature space to natural groupings. Thus, besides the advantage  
of not requiring the data to be annotated (a tedious and time 
consuming effort), there is scope to discover novel underlying 
patterns and gain an insight to the data through unsupervised 
learning.[6]

Classification

Machine learning for classification can be abstracted to a system  
that preprocesses the raw input (involves tasks such as cleaning  
the data to eliminate erroneous data, identify missing data,  
outliers, etc., and take an appropriate action - such as interpo-
lating some missing data or eliminating anomalies, to render 
the data amenable for further tasks in the process pipeline),  
extracts features (and possibly, even selects a subset of relevant  
features) and creates a model based on the features. The process 
of creating a model or ‘training the classifier’ is iterative and  
refinement is based on evaluating the model through cross-
validation (presenting some of the annotated data (not used 
for training) to ‘test’ the system). Suitable adjustments to the 
model may be made to ensure the errors are minimal, there is  
no systemic ‘bias’, that the model does not ‘overfit’ the training  
data and to assess the significance of the average performance 
(or describe how repeatable is the performance on one set of 
validation data) through multiple folds of validation.[7]

An example of a classification task in Scientometrics could be 
automatically classifying the category of a citation to be able 
to retrieve the most relevant/ useful references when required. 
Garzone and Mercer start with the observation a citation has  
multiple purposes such as paying homage to predecessors,  
acknowledging the use of some equipment or technique, 
questioning, agreeing with some result, etc. They present a  
rule-based classifier to label 35 categories of citations.[8]  

Another example is the related task of determining the polarity  
of a citation (positive or negative). This has been accomplished  
using linguistic features that describe the context of the  
reference.[9] It is noteworthy that the solution approach to 
these tasks hinge on the choice of meaningful features that  
capture the essence of the relevant content as well as the careful  
design of rules, which happen to be intuitive and easy to  
interpret, to achieve a meaningful outcome.

Prediction

Prediction of a target variable is the task of building various 
types of models, typically a weighted function of the current  
and/or ‘past’ data and other parameters that influence the  
outcome of target variable, to forecast the value it might take 
on at a specified time in the future.[10] A popular approach to 
predict values is through designing regression models whose  
output is a real number vis-a-vis a category or a number  
signifying a class label as with classification. For instance, the 
number of citations an article could be expected to have based 
on the number of authors, institutions, citations of individual 
authors, etc., is a predictive task.[11] A recent study has proposed  
the use of relevant features with neural networks to predict  
articles that would be highly cited.[12] Another interesting  
study has shown that the most cited articles (in Medical  
Research) can be predicted based on the number of tweets  
within the first three days of the article being published.[13] 
Quantile regression has been used to model the probability 
distribution of the future citation count of articles.[14] Through  
this it has been shown that potential long term impact of  
various articles can be predicted. Another study has shown 
that the keywords of the abstract (modeled using a bipartite 
graph) can be used to determine the number of citations in the 
future, with articles having higher citations conforming to the 
mainstream.[15] There have been a number of such studies that 
have compared the merits of various predictive models, most 
notably variants of regression.[16,17]

a. Feature Analysis

As we noted earlier, each of the foregoing methods requires  
an understanding of the influencing factors that are most  
relevant to the problem. A straight-forward supervised approach 
to classification is the k-nearest neighbor method (abbreviated 
as KNN). This method matches a set of features of a sample  
that needs to be annoated with others in the training set.  
It then selects a label that is common to the k most similar 
samples.[18]

While prediction tasks are typically accomplished through 
studying correlations between features, there are more sophis-
ticated techniques used and interesting questions that can be 
asked when we automate the process of finding appropriate  
factors. For instance, what makes an article influential?  
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Multivariate analysis has been performed to elicit this  
information.[19] Likewise, associations between features can be 
studied to come up with recommendations. As an example,  
research collaborations have been suggested based on  
predicting the link between research centers doing similar 
work using random forest classifiers.[20] Gini Index has been 
used in this study to determine the relative importance of  
features in determining the recommendation. Another multi-
variate analysis technique to understand the relative importance 
of features and a method traditionally used to arrive at a subset  
of weighted features that serve as strong predictors is the  
principal component analysis (abbreviated as PCA).[21,22]  
Association rules are implications or bijections that describe 
the relationship between two features. It seems the one of the  
most natural methods to arrive at relationship between  
explanatory variables. Even though there is much to be  
explored with mining of association rules, there have been a  
few examples of how insightful this can be. For instance,  
co-occurance of keywords with authors has been used to mine 
for frequent patterns resulting in association rules for authors 
and keywords or Journals and keywords.[23]

Clustering

Clustering is a process of grouping data based on the similarity  
between the features (most methods seek to minimize inter-
class similarity and maximize intra-class similarity). This is a  
popular approach in Scientometrics for two reasons: aggre-
gating data helps summarize the results for data points that are  
similar and there is no need for a large dataset of annotated  
data. Unlike the case of supervised learning where class  
labels or category boundaries may require some justification, 
the patterns that emerge through clustering can be used to 
gain some insight. The aspects that need some attention when 
using clustering are: the choice of similarity (or dissimilarity) 
measures - how well does it capture the inherent relationship  
between features? and the other is the choice of clustering  
algorithm. There are a number of approaches that can be used  
for clustering. The most popular approaches are agglomerative  
hierarchical clustering and DBSCAN. The former results in 
a dendrogram that augurs for a neat visual representation. 
The latter, DBSCAN, is a density based clustering method 
that takes into account the lack of homogeneity in the spread 
of data. An example of aggregation in Scientometrics is the 
clustering of journals and category labels at various levels.[24] 
For the DBSCAN, an example could be of arriving at a paper 
recommendation based on the proximity of citations.[25]

It is often seen that methods are rarely used in isolation, but 
in combination. For instance, an interesting problem is that of  
tracking changes in trends. In particular, changes in patent  
citation networks (i.e., clusters) have been studied over time 
to describe growth (an increase in the number of citations),  

contraction (a reduction in the number of citations), merging 
and splitting of citation networks, and the birth and death 
of a network from an existing one. Subjective and objective 
measures have been combined for the task with the hope the  
method identifies, for instance, the advent of new techno-
logical areas before the US Patents Office recognizes them.[26]                
Another multivariate model analyzes citation networks of 
articles to infer that for a higher h-index, it is advisable to 
publish with a large number of co-authors, particularly those 
who have been highly cited.[27] For this, the authors consider 
a network of co-authors that is centered around an individual 
author (‘ego-centric networks’).

Since the design of a new heuristic or modeling approach in  
machine learning is not the objective in Scientometrics  
vis-a-vis the choice of features and interpretation of the  
outcome, few papers in the area have detailed explanations of  
the mathematical underpinnings of the methods used or algo-
rithmic details such as parameter turning. A broad overview 
of Machine Learning methods and how they apply to Scien-
tometrics can be culled from.[28]

INNOVATIONS IN MACHINE LEARNING

Most of the effort in Machine Learning was focused on finding 
representations of data that are descriptive (for clustering or  
predictive analysis) or discriminative (for classification),  
understanding their interrelationships (correlation, multivariate  
analysis, association mining) and arriving at meaningful  
subsets (principal component analysis), etc. These tasks  
presupposed an understanding of the domain and an ability  
to preprocess the data followed by the design meanignful  
features. An enormous innovation in machine learning has 
been to outsource the task of feature engineering to machines.  
Central to this innovation is the question: can machines  
determine, on their own, representations of the data that matter  
for a task? It turns out that this is possible remarkably well 
through, what is quickly evolving to be a tool of choice across  
fields, deep learning.[29] This has had a particularly high  
impact for problems in which the dimensionality of the  
original data is huge, for which there is a very large volume 
of data points and the complexities are prohibitive to manually  
comb through the data to annotate training images and  
engineer meaningful features, such as classification of over a 
million images belonging to over a 1000 categories.

Deep learning has at its core an artificial neural network - the  
same idea used in the foregoing section to explain the principle  
of classification - a model that maps the input to a target label.  
The only difference is that there is a nonlinear function that  
computes the weighted sum of input features. While a single  
layer neural network returns a nonlinear map of some 
weighted combination of the features, it was explained that a 
network with multiple such layers partitions the feature space  
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through arbitrary unions of finite intersections, representing 
different regions corresponding to the categories.[30] Building  
on that principle, when multiple nodes in each layer are  
stacked upon multiple such layers, hence the name ‘deep neural  
network’, it manages to extract features that are relevant. And,  
through multiple epochs of training, adjusts the weights  
assigned to these features to arrive at a meaningful decision.[31]   
In fact, it has been shown that such a deep neural networks  
can outperform traditional feature selection and dimensionality  
reduction approaches such as PCA.[32]

Since the need for explicit feature engineering is obviated,  
different combinations of the number of layers in a deep  
learning network, the nonlinear functions used, the loss  
function based on which the weights are optimized, choice of 
learning rate and regularization procedures to overcome over-
fitting and mushrooming of off-the-shelf pre-trained models 
and computational tools to code deep learning architectures  
there has been an implosion of scientific papers on the theo-
retical aspects of deep learning and even more on the applica-
tion of deep learning to solve problems in various fields. Some 
of the techniques and their progression have been summarized 
in various surveys.[33,34] The applications of deep learning in 
computer vision, natural language processing and time series 
analysis have also been summarized in recent surveys.[35-37]

Relevance of Deep Learning to Scientometrics

What role would deep learning have to play in Scientometrics 
that relies on the design of features that can be understood 
and discussed? Since a lot of the predecessor work on machine 
learning hinges on analysis of content, this can be done with 
even more content using deep learning. For instance, when 
similarity groupings between journal articles were done, 
proximity measures had to be defined. Keywords of articles 
do not always match similar papers accurately and extending 
the matches to keywords extracted from the content could be  
colored by the length of the paper, context, etc. These are  
circumvented through use of language embedding models 
with deep learning. A word embedding, such as Word2Vec 
for example, coverts every word to a d-dimensional vector 
(typically 100-300 dimensions have been found empirically 
to be useful), rendering words used in similar contexts to 
be more similar than words that are literally closer.[38] Thus,  
words such as king and prince would have vector representa-
tions with a smaller distance between them than word pairs 
such as king and kind or prince and price.

Language models have been used to good effect with semantic  
ranking of papers in PubMed.[39] Similarly, content can be 
studied for proximity between citation contexts using such 
language embedding models to arrive at more meaningful 
reference retrieval systems. Language models can also be used  
for sentiment analysis of the reference context having a positive  

or negative connotation.[40] Deep Learning can be used with 
unsupervised learning to group similar content (document 
clustering).[41] Further heuristics, such as citations or frequently  
used keywords, etc., can be extracted from these that can 
be interpreted. Node representations through deep learning 
architectures can be used to discover network communities 
within large domains of scientific publishing.[42]

Treading with Caution

For low-resource data, overfitting is a problem with large  
network architectures. Transfer learning has found to be  
useful.[43] It remains to be seen if models built for tasks in other 
domains can be retrained with less effort for similar tasks in 
Scientometrics to achieve meaningful outcomes.

If neural networks were treated as a black-box for not being 
able to interpret the weights and partitioning of the feature 
space, deep learning networks have proved to be a ‘blacker’  
box, in that even the features are not easily amenable to  
interpretation. It has also been shown through applications 
that deep learning is prone to errors in adversarial settings. 
This has limited the use of deep learning in fields such as 
healthcare, where it is imperitive for a computational model 
to be robust and ‘transparent’. There has been some effort to 
address these limitations in the recent times.[44]

The spotlight in the recent times has also turned towards  
understanding metaheuristics for deep learning. What loss 
functions work better for an application? What assumptions 
on the data/ loss function expedite convergence? How should  
the learning rate be selected to avoid local minima? Is it  
possible for fewer epochs of training or smaller training sets 
to be used to achieve high performance measures achieved 
with vast amounts of high dimensional data and training over  
several epochs? For instance the Saha-Bora Activation Function  
(SBAF) has been used to explain the rise in ranking of the 
journal Astronomy and Computing over its predecessors.[45] 
Perhaps, a close look at the theoretical underpinnings of the 
methods can lend a deeper insight to the features that matter 
and pave way for harnessing the power of deep learning more 
effectively in Scientometrics in the future.

CONCLUSION

The field of Scientometry has benefited from computational  
advancements in Machine Learning in the past. Some instances 
include the analysis of social media postings to forecast the  
citations a Journal article might receive, analyzing the sentiment 
of a citation to determine if it has been used to strengthen an 
argument or rebut it and the context of a citation to retrieve 
relevant references. We have also noted the complexity of  
designing heuristics to rank institutions or journals or quantify 
the scientific impact of an author as these are beset with some 
bias inherent to how the measure is defined. The explicit  
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choice of influencing factors has led to debates about the  
relative importance of features and paved way for new measures 
to evolve. The advances in Machine Learning in recent times, 
particularly deep learning that obviates the need for explicit 
feature engineering, has proved to be most useful in other 
domains such as computer vision and linguistics to solve a 
plethora of problems considered computationally intractable 
earlier. Given that, by design, deep learning takes away the  
transparency of features, it remains to be seen how the  
community will take to adopting these methods for Sciento-
metrics. While the limitations are obvious, it can be argued to 
eliminate human biases. As suggested by empirical evidence, 
computational methods that require little intervention can be 
used to explain perplexing trends in the data. However, the 
choice of these methods would require a deep insight to the  
workings and foundations of the methods. It seems like a  
possibility that the right use of deep learning methods may 
even lend some new insights in Scientometrics.
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